Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority

Year Fourteen: September 2005-August 2006

by
Steven D. Wilson, Nancy E. Westcott, and Kevin L. Rennels

October 2008

Illinois State Water Survey
Institute of Natural Resource Sustainability
University of Illinois at Urbana-Champaign
Champaign, Illinois

Operation of Rain Gauge and Groundwater Monitoring
 Networks for the Imperial Valley Water Authority
 Year Fourteen: September 2005-August 2006

by
Steven D. Wilson,
Nancy E. Westcott, and Kevin L. Rennels

Illinois State Water Survey
Champaign, IL

October 2008

Contents

Page

Abstract 1
Introduction 3
Rain Gauge and Observation Well Networks 3
Irrigation Test Site 5
Report Objective 5
Acknowledgments 6
Rain Gauge Network: Description, Operation, and Maintenance 7
Groundwater-Level Observation Well Network: Description, Operation, and Maintenance 9
Irrigation Test Site: Description, Operation, and Maintenance (Year Four) 11
Precipitation, Groundwater-Level, and Irrigation Data Analysis 13
Precipitation Analysis 13
Groundwater-Level Analysis 13
Monthly Measurements 13
Continuous Measurements 13
Irrigation Water-Use Analysis 14
Results 15
Precipitation 15
Annual and Monthly Precipitation 15
Storm Events 24
Groundwater Levels 26
Monthly Measurements 26
Irrigation Field Site Measurements 28
Continuous Measurements 29
Irrigation Water Use 32
Summary 35
References 37
Appendix A. Hydrographs, Imperial Valley Observation Well Network 39
Appendix B. Observed Groundwater Levels, Imperial Valley Observation Well Network 49
Appendix C. Site Descriptions, Imperial Valley Rain Gauge Network 55

Contents (concluded)

Page

Appendix D. Instructions for Rain Gauge Technicians 69
Appendix E. Documentation, Imperial Valley Rain Gauge Network Maintenance, 2005-2006 73
Appendix F. Hydrographs, Transducer Data at the Test Site 75
Appendix G. Annual Precipitation, Years One-Thirteen 81
Appendix H. Precipitation Events, Total Precipitation, and Precipitation per Precipitation Event by Month and Season, 1992-2005 89
Appendix I. Documentation of Precipitation Events in the Imperial Valley, 2005-2006 93

List of Tables

Page

1. Imperial Valley Network Observation Wells 10
2. Depths, Installation Dates, and Measuring Point Elevations, Imperial Valley Irrigation Site Observation Wells 12
3. Monthly Precipitation Amounts (inches), September 2005-August 2006 15
4. Comparison of Total Precipitation (inches), Number of Precipitation Events, and Average Precipitation per Event for each Month and Season, 1992-2005 and 2005-2006 17
5. Estimated Monthly Irrigation Withdrawals (billion gallons), Number of Irrigation Systems, Withdrawal per System, and Withdrawal Rank 33
6. Average Annual Precipitation, Annual Precipitation Surplus, Running Surplus, and Ranked Annual Precipitation and Irrigation 33

List of Figures

Page

1. Configuration of the 13-site observation well and 25-site rain gauge networks, and location of the irrigation field site, Imperial Valley, 2005-2006 4
2. Locations of observation wells and streamflow discharge measurement points in relation to the irrigation test site 11
3. Network average annual precipitation (inches) for September 1993-August 2006 16
4. Total precipitation (inches) for September 2005-August 2006 16
5. Precipitation (inches) for September 2005 and October 2005 18
6. Precipitation (inches) for November 2005 and December 2005 19
7. Precipitation (inches) for January 2006 and February 2006 20
8. Precipitation (inches) for March 2006 and April 2006 21
9. Precipitation (inches) for May 2006 and June 2006 22
10. Precipitation (inches) for July 2006 and August 2006 23
11. Network average monthly precipitation (inches), September 1992-August 2006 25
12. Groundwater levels at the Snicarte well, MTOW-1, 1958-2006 27
13. Groundwater levels at the Snicarte well, MTOW-1, 1990-2006 27
14. Groundwater level (Wells 3 \& 6), Crane Creek stage elevation, and precipitation (Gauge 20) at the irrigation test site 28
15. Groundwater elevations at the Easton network well (MTOW-2) 29
16. Groundwater elevations at the Wildlife Refuge network well (MTOW-3) 30
17. Groundwater elevations at the Rest Area network well (MTOW-7) 30
18. Groundwater elevations at the Talbott Tree Farm network well (MTOW-13) 31
19. Groundwater elevations and precipitation at the Hahn Farm well (MTOW-12) 31

List of Figures (cont.)

Page

20. Estimated irrigation pumpage and average monthly precipitation, Imperial Valley 34

Operation of Rain Gauge and Groundwater Observation Well Networks for the Imperial Valley Water Authority Year Fourteen: September 2005-August 2006

by
Steven D. Wilson, Nancy E. Westcott, and Kevin L. Rennels

Abstract

The Illinois State Water Survey (ISWS), under contract to the Imperial Valley Water Authority (IVWA), has operated a network of rain gauges in Mason and Tazewell Counties since August 1992. The ISWS also established a network of groundwater observation wells in the Mason-Tazewell area in 1994, which is monitored by the IVWA. The purpose of the rain gauge network and the groundwater observation well network is to collect long-term data to determine the impact of groundwater withdrawals in dry periods and during the growing season, and the rate at which the aquifer recharges. This report presents data accumulated from both networks since their inception through August 2006. Precipitation is recorded continuously at 20 rain gauges. Groundwater levels are measured the first day of each month at 13 observation wells. The database from these networks consists of 14 years of precipitation data and 12 years of groundwater observations.

The Year Fourteen network precipitation of 27.74 inches was below average, 6.1 inches lower than the network 14-year average of 33.84, and 6.57 inches below the previous 13-year average of 34.31 inches. It was the fifth driest year in the 14 years of network operation and the third year in a row with less than 30 inches of precipitation. Every season in Year Fourteen received below-average seasonal total precipitation.

In 2005-2006, groundwater levels continued to decline because of below-average precipitation. Only one storm with significant rainfall provided a recharge response that was evident in the water-level data. The dry growing season also had an effect on irrigation water demands, with the amount of irrigation pumpage being the third highest total, following the 72 billion gallons pumped in 2005 and the 52 billion gallons pumped in 1996. Total irrigation for the June-September period was estimated to be 50 billion gallons.

To improve our understanding of the relationship among groundwater, stream discharge, and irrigation, an irrigation test site was established in April 2003 (Year Eleven) near Easton, IL. Nine observation wells were installed in close proximity to an irrigated field that abuts Crane Creek. Transducers with data loggers were installed in various wells since 2003 to monitor groundwater levels, and an additional logger was installed in Crane Creek to monitor stream stage. Data indicate there is groundwater discharge into Crane Creek at the test site even during irrigation withdrawals. The groundwater data indicate a rapid (within 24-hours) response of groundwater levels to precipitation, probably due mostly to the increase in stage in Crane Creek in this area of prevalent sandy soils, though shallow water levels are also a contributing factor.

Introduction

The Imperial Valley area, a portion of which also is called the Havana Lowlands, is located principally in Mason and southern Tazewell Counties in west-central Illinois, just east of the Illinois River (Figure 1). The area overlies the confluence of the ancient Mississippi and the Mahomet-Teays bedrock valleys. The sandy soils and rolling dunes of the confluence area in the western portion of the Imperial Valley stand in stark contrast to the typically flat silt loam soils throughout much of the rest of central Illinois. The sand-and-gravel deposits associated with these two valleys contain an abundant groundwater resource. The area is used primarily for row and specialty crops, and it is extensively irrigated from the easily developed groundwater resource that underlies the Imperial Valley.

Regional precipitation variability affects irrigation water demand on the aquifer, recharge to the aquifer, and the extent to which the aquifer can be used for agricultural irrigation and municipal, industrial, and domestic water supplies. All these factors affect any required water withdrawals from an aquifer. Therefore, knowledge of precipitation variability and its relationship to groundwater recharge over an extensively irrigated region, such as the area within the Imperial Valley Water Authority (IVWA), should provide useful information for the management of groundwater resources in that region.

The Illinois State Water Survey (ISWS) has a long-term interest in precipitation measurement and related research, and has performed precipitation research in areas such as hydrology, weather modification, climate change, and urban influences on precipitation climate. Scientists and engineers from the ISWS have conducted extensive research on Illinois groundwater resources and have a continued interest in the hydrodynamics and recharge of aquifers in the state.

The objective of this project is to conduct long-term monitoring of precipitation and groundwater levels in the Imperial Valley region to learn how groundwater resources respond to drought and seasonal irrigation, and to assess groundwater recharge.

Rain Gauge and Observation Well Networks

A number of studies (Walker et al., 1965; Panno et al., 1994; Clark, 1994) have shown that precipitation is the primary source of water for groundwater recharge in the Imperial Valley. Therefore, detailed precipitation measurements are important for understanding its contribution to groundwater levels in the Imperial Valley area.

During the past 50 years, the ISWS has operated rain gauge networks of varying areal gauge densities over various time periods in both rural and urban areas. Sampling requirements, as determined from these past studies (e.g., Huff, 1970), indicate that a 2 - to 3-mile gridded rain gauge spacing should be adequate for properly capturing convective precipitation systems (spring and summer), and a 6-mile spacing is adequate for more widespread precipitationproducing systems (fall and winter). The Belfort weighing bucket rain gauge provides precise and reliable precipitation measurements. Given the size of the IVWA area and the above spacing guidelines, a gridded, 25 -site rain gauge network (Figure 1) with approximately 5 miles between gauges was established in late August 1992. The network was reduced to 20 sites in September 1996. Results of the previous years of the network operation are reported in Peppler and Hollinger (1994, 1995), Hollinger and Peppler (1996), Hollinger (1997), Hollinger and Scott

Figure 1. Configuration of the 13 -site observation well and 25 -site rain gauge networks, and location of the irrigation field site, Imperial Valley, 2005-2006
(1998), Hollinger et al. (1999, 2000), Scott et al. (2001, 2002), Wehrmann et al. (2004, 2005), and Wilson et al. (2008a, b).

The observation well network originally consisted of 11 wells, Mason-Tazewell Observation Wells (MTOW) 1 through 11. The network was established for the IVWA in 1994 by Sanderson and Buck (1995). The IVWA added two wells (MTOW-12 and MTOW-13) in 1995 and 1996, respectively, to improve spatial coverage of the network. The 13 observation wells are located fairly uniformly across the Imperial Valley study area (Figure 1). Hollinger et al. (1999) includes the first summary of the groundwater-level data and statistical analyses of the correlation among precipitation, Illinois River stage, and groundwater levels for the four years that the observation well network had been in operation. Hollinger et al. (2000), Scott et al. (2001, 2002), Wehrmann et al. (2004, 2005), and Wilson et al. (2008a, b) include groundwaterlevel data and reanalysis of the correlation between precipitation, Illinois River stage, and groundwater levels for the observation well network prior to Year Fourteen.

Irrigation Test Site

Understanding the relationship between the regional groundwater discharge to streams and the effects of irrigation on water levels near these streams is a key component in developing a transient model of the Imperial Valley area. In order to model the conditions as they change during the summer, additional input data will be required about the effects of irrigation on groundwater levels and groundwater discharge to streams. Necessary data inputs for an ideal site include continuous water-level data, pumping rates and times for irrigation systems, and discharge/stage readings at a nearby stream, all at a location where groundwater is influenced by a stream and where the groundwater system is under the influence of irrigation pumpage. A test site meeting these criteria was located along Crane Creek, near Easton, IL, in Mason County. The site has only one center-pivot irrigation system within a half mile of the creek, which provides some control over irrigation effects in the immediate vicinity. The site, owned by Jeff Smith, is being studied to gather some of the necessary data for input into a regional flow model and eventually a nested model of the site within the regional model.

Report Objective

This report documents the operation, maintenance, data reduction and analysis, and management of the networks during the fourteenth year of the rain gauge network operation and the twelveth year of the observation well network operation. A discussion of observed relationships among precipitation, Illinois River stage, irrigation, and groundwater levels is included.

Several appendices document groundwater hydrographs (Appendix A), observed groundwater-level data (Appendix B), rain gauge network site descriptions (Appendix C), instructions for rain gauge technicians (Appendix D), and rain gauge maintenance for the 20052006 period (Appendix E). The transducer data for the Crane Creek irrigation test site are included (Appendix F). Contour maps of annual precipitation across the Imperial Valley are presented for Years One-Thirteen (Appendix G). Documentation also is presented for monthly and seasonal 1992-2005 precipitation events (Appendix H) and for all 2005-2006 precipitation events (Appendix I).

Acknowledgments

This work was conducted for the Imperial Valley Water Authority (IVWA) with partial support from the Illinois State Water Survey (ISWS) General Revenue Fund. The IVWA Board, under the direction of Mr. Morris Bell, chairman, administers the project. The views expressed in this report are those of the authors and do not necessarily reflect the views of the sponsor or of the ISWS. Paul Nelson and Robert Ranson run the rain gauge network, and Morris Bell collected the monthly groundwater-level data. Linda Hascall and Sara Olson drafted the precipitation maps for this report, and Lisa Sheppard edited the report. Their efforts are greatly appreciated. The ISWS and IVWA also take this opportunity to thank all of the local Mason/Tazewell County observers for their diligence in making this analysis possible. Special thanks goes to Jeff Smith of Easton, Illinois, for allowing the installation of nine observation wells at his farm and permitting our continual presence there to gather data.

Rain Gauge Network: Description, Operation, and Maintenance

Peppler and Hollinger (1994) described construction of the IVWA rain gauge network and the type and setup of the weighing bucket rain gauges used. Figure 1 shows locations for gauges R1-R25. Appendix C gives complete site descriptions for the 20 operational rain gauges as of August 31, 2006. Also included are the locations of five rain gauges removed from the network in 1996. In December 1997, the rain gauges were upgraded to include a data logger and linear potentiometer to automatically record the amount of water in the rain gauges every 10 minutes. This eliminates the necessity to digitize weekly or monthly paper charts, saves two to three days of analysis time each month, and provides more accurate time frames for events. Precipitation also is recorded each month on eight-day paper charts for backup if data loggers fail.

The 20 active sites are maintained by a local Mason County resident hired to change the charts once a month, download data from the data loggers, and perform other routine servicing. Rain gauge servicing includes checking the felt-tipped pen to make sure it is inking properly, emptying the bucket contents from approximately April-October, and noting any unusual problems, including chart-drive malfunction, gauge imbalance or instability, vandalism, unauthorized movement of the gauge, etc. During the warm season, evaporation shields are fitted into the collection orifice above the bucket to minimize evaporation. During the cold season, one quart of antifreeze is added to each rain gauge bucket so that any frozen precipitation collected will melt to allow a proper weight reading, and to prevent freeze damage to the collection bucket. Rain gauges are serviced during the first few days of the month. The memory card with the digital data and the 20 rain gauge charts are sent monthly to the ISWS. Appendix D presents instructions for the rain gauge technician.

Champaign-based personnel visit the network to perform major maintenance and repairs as needed. This usually consists of a site assessment of an observer-noted problem and determination of a solution. Sometimes problems pertain to the chart drives, and the usual solution is to adjust or replace the chart drive. If replaced, the defective chart drive is cleaned and readied for reuse at the ISWS. Other typical repairs performed on these trips include resoldering wires and battery replacement. The 20 gauges are calibrated every two years. If a gauge appears to record consistently high or low precipitation amounts compared with its neighbors, the gauge is first cleaned and calibrated. If the problem persists, the gauge is replaced. Appendix E documents non-routine maintenance or repairs, including any site relocations, for the 20 rain gauges during Year Fourteen.

Groundwater-Level Observation Well Network: Description, Operation, and Maintenance

Table 1 provides a general description of each network well, including well location, depth, and the predominant soil associations in proximity to each well. This provides some determination of relative soil permeability around the wells. Generally, the greater permeabilities associated with the Plainfield-Bloomfield, Sparta-Plainfield-Ade, and Onarga-Dakota-Sparta soil associations (Calsyn, 1995) are found at MTOW-1, $-3,-4,-6,-7,-9$, and -12 , which are all located in the western portion of the study area (Figure 1). Fine-grained materials found in the upper portion of the geologic profiles at MTOW-10 and MTOW-11 (southeastern portion of the study area) indicate that the water levels in these two wells are under artesian conditions. Because water in these wells is under pressure, water-level responses may be different from those of other wells.

The observation wells range in depth from 24 to 100 feet. Most network wells were constructed after 1985 as part of special studies within the Imperial Valley or for use in the observation well network. A few wells that existed prior to the development of the network were used for water supply. All of the network wells have been surveyed for well head elevation above mean sea level.

Well MTOW-1, located at Snicarte, is an inactive, large-diameter, hand-dug domestic well that has been monitored by the ISWS since 1958. MTOW-1 has been incorporated into the Shallow Groundwater Well Network of the ISWS Water and Atmospheric Resources Monitoring (WARM) Program. This well is equipped with a Stevens Type F water-level recorder that produces a continuous record of the groundwater level on a 32-day paper chart. ISWS staff visit the well monthly to measure the groundwater level, change the recorder chart, and perform recorder maintenance. Therefore, a longer and more complete groundwater level record is available for this well than for any other well in the IVWA network. Because the Snicarte well has been dry several times in recent years, a new well is being drilled to replace it. The new well will be located just south of the existing well at a road intersection.

From 1995 through 2001, groundwater levels in the IVWA observation wells were measured at the beginning of each month from March through November (December, January, and February readings typically were not collected). Beginning in 2002, monthly measurements were collected throughout the entire year. A mid-month measurement was collected during the 19951997 irrigation seasons (May-October 1995, May-September 1996, and May-August 1997). Groundwater levels measured manually with a steel tape or electric probe are entered into a database as depth below land surface. The IVWA collects these measurements, maintains the database, and forwards the resulting data annually to the ISWS.

In January 2005, four of the wells (MTOW-2, $-3,-7,-13$) were outfitted with digital data loggers for collecting water level measurements. In Year Fourteen, six additional wells were outfitted with digital data loggers. Manual monthly measurements were not taken at wells with digital data loggers. MTOW-1, -5 , and -9 are the only observation wells without digital data loggers.

Table 1. Imperial Valley Network Observation Wells

	Name	I.D.	Location	Depth (feet)	Generalized Soil Association	Remarks
	Snicarte	MTOW-1	Section 11.8b, T.19N., R.10W., Mason County	40.5	Sparta-PlainfieldAde	Inactive well, continuous record since 1958
	Easton	MTOW-2	Section 25.8a, T.21N., R.7W., Mason County	82	Elburn-Plano- Thorp	Abandoned city fire well
	Mason County Wildlife Refuge \& Recreation Area	MTOW-3	Section 14.8c, T.20N., R.9W., Mason County	24	Plainfield- Bloomfield	Installed in 1985 for Illinois State Geological Survey (ISGS) study
	Sand Ridge SR-11	MTOW-4	Section 2.8d, T.22N., R.7W., Mason County	27	Plainfield- Bloomfield	Installed in 1989 for ISWS study
	Pekin - OW8	MTOW-5	Section 3.6a, T.24N., R.5W., Tazewell County	49	Selma-Harpster	Installed in 1991 for ISWS study
	Mason State Tree Nursery	MTOW-6	Section 33.8f, T.22N., R.7W., Mason County	45.5	Onarga-DakotaSparta	Installed in 1993
\bigcirc	IL Route 136 Rest Area	MTOW-7	Section 3.7e, T.21N., R.8W., Mason County	44	Onarga-DakotaSparta	Installed in 1993
	Green Valley	MTOW-8	Section 34.1c, T.23N., R.5W., Mason County	53.5	Elburn-Plano- Thorp	Installed in 1993
	IDOT - DWR	MTOW-9	Section 12.8e, T.21N., R.9W., Mason County	48	Sparta-PlainfieldAde	Installed in 1994 for flood study
	San Jose	MTOW-10	Section 36.2d, T.22N., R.5W., Mason County	56	Elburn-Plano- Thorp	Old municipal well
	Mason City	MTOW-11	Section 18.2a, T.20N., R.5W., Mason County	63	Tama-Ipava	Old municipal well
	Hahn Farm	MTOW-12	Section 23.8c, T.21N., R.8W., Mason County	100	Plainfield- Bloomfield	Old turkey farm well
	Talbott Tree Farm	MTOW-13	Section 9.4a, T.23N, R.6W.,	82	Selma-Harpster	Installed in 1996

[^0]
Irrigation Test Site: Description, Operation, and Maintenance (Year Four)

The irrigation test site along Crane Creek, southwest of Easton, IL, is located in Section 4 of Township 20 North, Range 7 West (Crane Creek Township) on property owned by Mr. Jeff Smith. Nine observation wells were installed in April 2003. Three are on the north side of Crane Creek and six are on the south side. The irrigation well is on the south side of Crane Creek; its irrigation pattern, along with the observation well locations, are shown in Figure 2. The observation wells range from 31 to 37 feet deep, and the non-pumping water levels are less than 10 feet below land surface during the off-irrigation season. The depth and date of construction for each well are listed in Table 2. Monitoring included groundwater level observations (manual and digital), surface water stage (manual and digital), discharge measurements, and measurement of well elevations.

Figure 2. Locations of observation wells and streamflow discharge measurement points in relation to the irrigation test site

As of September 1, 2005, transducers were installed in all wells at the site and in Crane Creek near the downstream bridge. The logger in well 1 was removed on August 3, 2006. Also, the logger in well 9 was removed on July 14, 2006. All other loggers remained in place.

Transducers placed at the site were set up to collect data at varying intervals. Well 6 and the transducer in Crane Creek collected data at 15 -minute intervals. The transducers in wells 4,5 , 8 , and 9 were set to collect data every 30 minutes. In wells $1,2,3$, and 7 , the transducers collected data every hour. Hydrographs of the transducer data for the site wells are located in Appendix F.

In total, there were 40 groundwater-level measurements, 47 downloads from the data loggers, and five stage measurements completed at the test site during Year Fourteen. The measuring point elevations of the wells and stage readings were determined previously based on the downstream bridge elevation of 494.00 feet mean sea level (msl) (taken from the U.S. Geological Survey [USGS] topographic map). Elevations were surveyed from the downstream bridge so that relative water levels could be determined. The exact elevation of the downstream bridge has yet to be determined, but assuming it is 494 feet msl, water levels can be plotted in relative terms to evaluate flow direction and elevation differences between the groundwater system and Crane Creek. The elevations are listed in Table 2.

Table 2. Depths, Installation Dates, and Measuring Point Elevations, Imperial Valley Irrigation Site Observation Wells

Well number	Depth (feet)	Date installed	MP Elevation
1	33.10	$4 / 23 / 03$	492.45
2	32.75	$4 / 22 / 03$	495.07
3	31.10	$4 / 23 / 03$	493.26
4	34.30	$4 / 22 / 03$	495.03
5	34.75	$4 / 22 / 03$	491.86
6	37.00	$4 / 22 / 03$	495.81
7	32.85	$4 / 23 / 03$	496.27
8	34.00	$4 / 23 / 03$	494.24
9	33.50	$4 / 23 / 03$	492.28
Upstream bridge	----	---	496.61
Downstream bridge	----	---	494.00

Precipitation, Groundwater-Level, and Irrigation Data Analysis

This report presents the rainfall and groundwater-level data for the period September 2005August 2006, called Year Fourteen in this report. Data collected from the rain gauge and observation well networks were maintained in separate databases, but the resulting data were evaluated together to examine the response of groundwater levels to local precipitation. Observed network groundwater levels may be influenced by irrigation pumpage, so an estimate of monthly pumpage also is presented.

Precipitation Analysis

Data reduction activities during Year Fourteen of network operation are similar to those performed during the previous 13 years (Peppler and Hollinger, 1994, 1995; Hollinger and Peppler, 1996; Hollinger, 1997; Hollinger and Scott, 1998; Hollinger et al., 1999, 2000; Scott et al., 2001, 2002; Wehrmann et al., 2004, 2005; and Wilson et al., 2008a, b). Hourly rainfall amounts are totaled from 10-minute digital data and are placed into an array of monthly values for the 20 gauges. This data array is used to check for spatial and temporal consistency among gauges, and to divide the data into storm periods. If the digital data are missing, hourly rainfall amounts from the analog (paper) charts are used. In the rare event that data from both a data logger and the corresponding chart are missing, the hourly amounts are estimated based on an interpolation of values from the nearest surrounding gauges.

Groundwater-Level Analysis

Monthly Measurements

Groundwater levels for each well for the period of record (1995-2006) are presented graphically (Appendix A) and in tabular form (Appendix B). Graphs of groundwater levels are commonly called hydrographs. Each hydrograph also contains the total monthly precipitation for the nearest rain gauge. For observation wells located between several rain gauges, an average of the surrounding rain gauge data is presented. Groundwater-level data are presented as depth to water from land surface. For observation wells located relatively near the Illinois River (MTOW-$1,-5$, and -9), the stage of the river at the nearest U.S. Army Corps of Engineers (USACE) gauging station also is shown. Mean monthly stage data were downloaded for the Beardstown, Havana, and Kingston Mines stations from the USACE Internet site (http://water.mvr.usace.army.mil).

Continuous Measurements

Selected historical daily groundwater-level data from recorder chart records for the Snicarte observation well (MTOW-1) were transferred to digital format and graphed with daily rainfall data from gauge 24. The results, shown in the Year Eleven report, indicate that there is indeed a quick response to rainfall at MTOW-1. As a result, transducers were temporarily installed in Green Valley (MTOW-8) and Rest Area (MTOW-7) wells during Year Twelve, showing marginal success at correlating rainfall to groundwater-level changes. In Year Thirteen, four digital water-level recorders were purchased and installed in wells MTOW-2, $-3,-7$, and -13 . In Year Fourteen, six more transducers were purchased and installed in wells MTOW-4, -6, -8, -10, -

11, and -12 . MTOW-1 is the Snicarte observation well that has a continuous paper recorder. MTOW-5 and -9 are very near the Illinois River; historical data indicate that they are heavily influenced by river stage. For that reason, transducers would provide limited benefits.

Irrigation Water-Use Analysis

Since 1995, the IVWA has estimated irrigation pumpage from wells in the Imperial Valley based on electric power consumption, using the equation below:

$$
\mathrm{Q}=1505 \times \mathrm{KWH} \times \mathrm{IRR} / \mathrm{MEC}
$$

where Q is the total estimated monthly irrigation pumpage (in gallons), KWH is the monthly electrical power consumption (in kilowatt hours) used by the irrigation accounts served by Menard Electric Cooperative, IRR is the total number of irrigation systems in the IVWA region, MEC is the number of Menard Electric Cooperative irrigation accounts, and 1505 is a power consumption conversion factor (in gallons/KWH). Irrigation systems in the region receive electric power from the Menard Electric Cooperative and two investor-owned utilities (AmerenCIPS and AmerenCILCO). Menard Electric Cooperative provides the IVWA with electric power consumption data for the irrigation services they serve during the growing season (JuneSeptember). Not all irrigation systems use electric power to pump water, and Menard serves only some of these systems. The pumpage estimate assumed that application rates for the irrigation wells with electric pumps in Menard Electric Cooperative also are representative of other utilities and other energy sources. Past estimates were based on the assumption that 33 percent of the irrigation wells were in Menard Electric Cooperative in 1995-1997, and 40 percent in 1998-2001.

In summer 2002, a USGS study indicated the need for a new power consumption conversion factor. An updated conversion factor was determined by recording electrical consumption while closely measuring the pumping rate at 77 irrigation systems. The updated value, 1259 gallons/KWH, is appreciably lower than the previously used factor of 1505 gallons/KWH, suggesting that previous estimates of water withdrawals may have overestimated pumpage by approximately 20 percent (i.e., pumping system efficiency is estimated to be 20 percent less than previously thought). Therefore, irrigation withdrawals for years 1997 to the present were recalculated using the new formula, replacing earlier published estimates. Collection of additional data related to the irrigation systems (such as system age and size) and conversion factors associated with those systems may further enhance withdrawal estimates.

Results

Precipitation

Annual and Monthly Precipitation

The Year Fourteen dataset was used to produce the following analyses: 1) monthly and annual (September 2005-August 2006) precipitation amounts for each site in the IVWA network (Table 3); 2) the average precipitation pattern for the 14-year network operation (Figure 3); 3) the total precipitation pattern for Year Fourteen (Figure 4); 4) a comparison of total precipitation, precipitation events, and precipitation per event (Table 4); and 5) the average precipitation for each month in Year Fourteen (Figures 5-10). The annual precipitation patterns for Years OneThirteen also are presented (Appendix G).

The Year Fourteen network precipitation of 27.74 inches was below average, 6.1 inches lower than the network 14 -year average of 33.84 , and 6.57 inches below the previous 13 -year average of 34.31 inches. It was the fifth driest year in the 14 years of network operation and the third consecutive year with less than 30 inches of precipitation. Every season in Year Fourteen was below average in seasonal total precipitation.

Table 3. Monthly Precipitation Amounts (inches), September 2005-August 2006

	Month												
Station	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Total
2	3.42	0.99	4.04	1.20	4.48	0.41	3.26	4.38	0.86	2.38	2.07	5.46	32.95
3	2.73	1.29	3.28	0.72	3.41	0.29	1.86	3.73	0.95	1.77	4.82	2.42	27.27
4	1.70	0.95	2.35	0.88	3.05	0.22	2.53	3.14	0.87	2.34	4.74	3.22	25.99
6	1.96	1.10	3.32	0.90	3.28	0.08	1.88	4.22	2.58	1.54	3.32	2.42	26.60
7	1.83	0.99	3.44	0.85	2.90	0.18	2.31	4.18	2.38	2.02	3.76	2.97	27.81
8	2.29	0.93	2.03	0.84	2.38	0.16	2.39	3.63	1.91	1.36	5.75	3.06	26.73
9	2.55	1.08	2.63	0.89	3.86	0.18	1.78	3.62	2.54	2.43	2.77	3.10	27.43
10	2.42	1.15	2.79	0.77	3.50	0.12	2.00	4.51	2.48	2.92	2.91	2.48	28.05
11	2.49	1.22	2.52	0.74	2.85	0.09	2.20	3.54	2.52	1.32	2.93	3.39	25.81
12	2.16	1.42	3.01	1.40	2.94	0.14	2.59	4.14	2.39	1.84	5.63	3.29	30.95
13	2.52	1.27	1.90	0.92	3.34	0.22	1.77	4.65	3.16	1.29	4.31	2.25	27.60
15	2.85	1.48	2.38	1.13	3.03	0.27	2.26	4.43	2.62	2.39	4.58	2.37	29.79
16	2.23	1.42	2.27	0.70	2.27	0.05	1.90	3.95	2.38	1.56	4.40	3.67	26.80
18	2.51	1.28	2.50	0.89	3.51	0.16	2.17	5.31	2.91	1.28	4.19	2.70	29.41
19	2.43	1.30	2.63	1.11	3.30	0.02	2.14	4.93	2.26	1.59	4.87	3.03	29.61
20	2.25	1.31	2.06	0.99	3.09	0.11	2.50	4.29	2.17	1.46	3.22	1.93	25.38
21	2.17	1.26	1.90	0.88	2.59	0.20	1.92	3.81	2.77	1.71	3.78	2.58	25.57
22	2.26	1.22	2.42	0.99	2.93	0.05	1.28	4.83	2.41	1.45	4.12	2.38	26.34
23	2.07	1.49	2.90	1.30	2.58	0.04	1.56	4.44	1.95	1.95	5.11	3.31	28.70
24	2.80	1.56	2.37	1.00	3.57	0.08	2.53	3.90	2.33	1.49	2.75	1.62	26.00
Avg	2.38	1.24	2.64	0.95	3.14	0.15	2.14	4.18	2.22	1.80	4.00	2.88	27.74

Note:

Stations 1, 5, 14, 17, and 25 were removed from the network in September 1995.

Figure 3. Network average annual precipitation (inches) for September 1993-August 2006

Figure 4. Total precipitation (inches) for September 2005-August 2006

Table 4. Comparison of Total Precipitation (inches), Number of Precipitation Events, and Average Precipitation per Event for Each Month and Season, 1992-2005 and 2005-2006

	1992-2005 13-year average			2005-2006 average			
Period	Precipitation	Events	Inches/event		Precipitation	Events	Inches/event
Sep							
Oct	2.63	6.8	0.38		2.38	10	0.24
Nov	2.53	9.5	0.26		1.24	5	0.25
Dec	2.76	9.9	0.28		2.64	9	0.29
Jan	1.44	8.5	0.17		0.95	9	0.11
Feb	2.11	10.2	0.21		3.14	5	0.63
Mar	1.66	8.2	0.20		0.15	2	0.08
Apr	2.04	7.8	0.26		2.14	14	0.15
May	3.40	11.2	0.31		4.18	11	0.38
Jun	4.50	14.5	0.31		2.22	13	0.17
Jul	3.85	11.8	0.32		1.80	11	0.16
Aug	3.78	10.8	0.35		4.00	12	0.33
	3.60	13.0	0.28		2.88	12	0.24
Fall							
Winter	7.92	26.3	0.30		6.26	24	0.26
Spring	5.22	26.9	0.19		4.24	16	0.27
Summer	9.95	33.4	0.30		8.54	38	0.22
	11.22	35.7	0.31		8.68	35	0.25
Annual	34.31	122.3	0.28		27.74	113	0.25

Figure 6. Precipitation (inches) for November 2005 and December 2005

Figure 7. Precipitation (inches) for January 2006 and February 2006

Figure 8. Precipitation (inches) for March 2006 and April 2006

Figure 9. Precipitation (inches) for May 2006 and June 2006

Figure 10. Precipitation (inches) for July 2006 and August 2006

Figure 3 presents the 14-year network average, excluding sites 16, 19, and 21 during the period 1993-2006, and Figure 4 presents the annual precipitation pattern for Year Fourteen. The bias at sites 16,19 , and 21 was considerably smaller for Years Eleven-Fourteen, thus the precipitation data for these three stations are included in all analyses. During Year Fourteen, annual gauge totals varied from 25.38 inches at site 20 to 32.95 inches at site 2 (Figure 4). Six-inch gradients in annual precipitation are not unusual during any given year, as long as they are not replicated at the same gauges year after year, and are somewhat supported by surrounding gauges.

April and July 2006 (Figure 8b and 10a) were the wettest months of Year Fourteen, reporting network averages of 4.17 inches and 4.00 inches, respectively, followed by January 2006 (Figure 7a) with 3.14 inches of precipitation. February 2006 was the driest month of the year (Figure 7b, 0.15 inches) followed by December 2005 (Figure 6b, 0.95 inches). The February monthly precipitation total was the driest of any month in 14 years of network operation.

Individually, only January 2006 was more than 133 percent above average (see Table 4). By contrast, February 2006 received only 9 percent of the 13 -year annual average precipitation. October 2005, December 2005, May 2006, and June 2006 also received less than 67 percent of their respective average monthly precipitation. The remaining six months, September and November 2005, and March, April, July, and August 2006, were within ± 33 percent of the 13year average precipitation.

The spring and summer of 2006 (March-May 2006 and June-August 2006) were the wettest seasons of the year, as is common. However, all four seasons received below-average seasonal precipitation. The annual precipitation total for 2005-2006 was the fifth driest of the 14 years of network operation. The network received 27.81 inches less precipitation than in the wettest year (1992-1993) and 2.04 inches more than in the driest year (1995-1996).

Storm Events

The number of network precipitation periods was determined for the 14-year period. Mean monthly, seasonal, and annual numbers of these precipitation events are presented for each year (Appendix H), and for 2005-2006 (Table 4). The monthly, seasonal, and annual number of precipitation events averaged over the 1992-2005 period also are presented (Table 4). A network storm period was defined as a precipitation event separated from preceding and succeeding events at all network stations by at least three hours. Data for the individual network storm periods also are presented (Appendix I, Tables I-2 and I-3).

During this dry Year 14, there were 113 precipitation events, nine fewer than the 13-year average number of events. More events than average occurred in the spring, but fewer than average events fell during the other three seasons of the year. Most events occurred in the spring and summer, as is typical. The amount of precipitation per event was also below average in the spring and summer of 2006.

The plot of the network average monthly precipitation time series (Figure 11) shows the monthly variation of precipitation. It is not unusual for one or two of the spring and summer months to fall below 2.75 inches of precipitation in any given year. In the four summers of 1995, 1996, 1997, and 2000, precipitation levels in three or four months during the spring-summer season fell below 2.75 inches. From February 2005 through December 2005, no month had precipitation over 2.75 inches. From January 2006 through August 2006, there were only three
months with precipitation over 3.0 inches; between each month with higher precipitation, however there were two intervening months with precipitation below 2.5 inches.

A total of 1703 network storm periods occurred during the 14-year observation period: 148 in 1992-1993, 102 in 1993-1994, 129 in 1994-1995, 98 in 1995-1996, 121 in 1996-1997, 134 in 1997-1998, 144 in 1998-1999, 156 in 1999-2000, 148 in 2000-2001, 122 in 2001-2002, 80 in 2002-2003, 110 in 2003-2004, 98 in 2004-2005, and 113 in 2005-2006, resulting in a 14-year average of 122 storms per year.

Appendix I documents each network storm period for Year Fourteen with the date and hour of the start time, duration, number of sites receiving precipitation, network average precipitation, storm average precipitation, maximum precipitation received, station (gauge) where the maximum occurred, and storm recurrence frequency of the maximum observed precipitation. The network average precipitation is the arithmetic mean of the precipitation received at all network stations, and the storm average is the arithmetic mean of the precipitation received at stations reporting precipitation during the storm period.

The storm recurrence frequency is the statistical probability of the recurrence of a storm

Figure 11. Network average monthly precipitation (inches), September 1992-August 2006
with the reported precipitation (i.e., a 10 -year storm would be expected to occur on average only once every 10 years at a given station, or have a 10 percent chance of occurring in any given year). The recurrence frequencies computed here are based on the total storm duration for the area. See Appendix I for further explanation. Also included in Appendix I is a table indicating the precipitation received at each of the 20 stations for each network storm period (Table I-3) for Year Fourteen. Sites that exceed the one-year or more recurrence frequency are indicated in bold type
(Table I-3). Previous years of network storm periods can be found in Scott et al. (2002) and in Wehrmann et al. (2004, 2005).

In the first 13 years of network operation, 62 of the 1590 storm periods produced maximum precipitation at one or more stations with a recurrence frequency greater than one year: 50-year (1 storm), 10-year (3 storms), 5-year (8 storms), 2-year (32 storms), and greater than 1-year but less than 2 -year (18 storms). The 50-year storm (storm 153) occurred on September 13, 1993, and the 10-year storms on May 16, 1995 (storm 323), May 8, 1996 (storm 432), and July 19, 1997 (storm 580). These four heaviest storms occurred during the warm-season months (MaySeptember).

Nine storms had a recurrence interval exceeding the one-year or greater recurrence frequency in 1992-1993, five in 1993-1994, six in 1994-1995, one in 1995-1996, three in 19961997, four in 1997-1998, four in 1998-1999, five in 1999-2000, and four in 2000-2001, eight in 2001-2002, seven in 2002-2003, five in 2003-2004, and only one in 2004-2005.

In Year Fourteen, two of the 113 network storm periods exceeded the one-year recurrence frequency. Year Fourteen had a below-average number of network storm periods and a belowaverage number of heavy rainfall periods. No events exceeded the 5 -year or more recurrence frequency. Two Year Fourteen storm events were 2-year events, which occurred on April 5, 2006 (storm 1647) and July 19, 2006 (storm 1687). No 5-year event has occurred since August 2002, and no 10-year event has occurred since July 1997.

Groundwater Levels

Monthly Measurements

Groundwater levels in observation wells MTOW-5 and MTOW-9 have been found to fluctuate largely in response to river stage because of their proximity to the Illinois River. The peak mean monthly Illinois River stage during Year Fourteen was in March and April 2006, although the peak was low compared to most years (see Figure A-7 and Figure A-13 in Appendix A). Because of the low river stage during Year Fourteen, groundwater levels in MTOW-5 and -9 are at some of their lowest elevations since the project began.

Another year of below-average rainfall has affected groundwater elevation in the study area. This began in March 2005 when rainfall amounts fell below average and has continued since. Last year, it was reported that groundwater levels were at or near the lowest levels since the study began, and for Year Fourteen, they have dropped below those levels. As of August 2006, many observation wells are at the lowest level they have ever been (see the graphs in Appendix A).

The long-term hydrograph at MTOW-1 (Snicarte) in Figure 12 provides a reference for comparison with the shorter records of the other network wells. The ISWS has recorded water levels in this well since 1958. Annual fluctuations from less than 1 foot to more than 6 feet have been observed. Based on available data, these annual fluctuations often appear to be superimposed on longer-term trends, perhaps 10 years or more. For the 48-year record, both the

Figure 12. Groundwater levels at the Snicarte well, MTOW-1, 1958-2006

Figure 13. Groundwater levels at the Snicarte well, MTOW-1, 1990-2006
record low and high have been observed within the past 15 years. A detailed look at water levels since 1990 is shown in Figure 13. During and shortly after the drought years of 1988 and 1989, the MTOW-1 water level fell to 40.5 feet below land surface from September 1989 until April 1990, the only time in its 45 -year history that the well went dry, until it did so again in 2006. During the 1993 flood, groundwater levels rose almost 10 feet and peaked at approximately 30 feet in September 1993. In the years since then, groundwater levels in MTOW-1 show an almost linear decline until 1998, when water levels rose dramatically, recovering to peak levels similar to those observed in 1994 and 1995.

Irrigation Field Site Measurements

The data for wells 3 and 6 are shown in Figure 14 along with the stage in Crane Creek and the precipitation from gauge 20 . The data show each summer's effects from irrigation pumpage at the site. Figure 14 graphically represents the significance of the dry summer in 2005 and 2006, as well as the significance of heavy rainfall in May and June 2004.

Figure 14. Groundwater level (Wells 3 \& 6), Crane Creek stage elevation, and precipitation (Gauge 20) at the irrigation test site

The lasting effects of lower rainfall amounts in 2005 are evident on the water levels in 2006. One heavy rainfall event in April 2006 provided a significant response in the aquifer at the test site.

Continuous Measurements

An analysis of the continuous record from the Snicarte well (MTOW-1) in the Year Eleven Report (Wehrmann et al., 2005) indicated that recharge often occurs within one to three days of the rainfall event and typically lasts three to five days after the rainfall event has ended. In other words, recharge occurs on a scale of days, not months after a precipitation event; thus using monthly water-level data to develop correlations with rainfall may not be meaningful. This yields several results. First, it confirms that aquifer response to rainfall can happen quickly, as one might expect with the permeable surface soils typical of the area. Second, duration of the recharge events vary based on the magnitude of the rainfall event.

In response to this finding, transducers were placed in the Green Valley (MTOW-8) and Route 136 Rest Area (MTOW-7) observation wells during Year Twelve to begin collecting continuous water-level data. The data indicated that indeed recharge was evident two to three days after significant rainfall events at these wells.

Based on these results, the IVWA purchased 10 in-situ mini-troll data loggers that were installed in wells between December 30, 2004 and August 2005. The first four wells with digital recorders were Easton (MTOW-2), Wildlife Refuge (MTOW-3), Rest Area (MTOW-7), and the Talbott Tree Farm (MTOW-13). Figures 15-18 present the digital water-level data collected for these four wells during Year Fourteen.

Reviewing these four sets of water-level measurements revealed that most data do not show recharge events as clearly as have been evident on past datasets. This is due to several reasons: Year Fourteen was a dry year, the depth to water is deeper for some wells than others, and the distance from a particular well to a nearby stream could strongly influence findings.

Figure 15. Groundwater elevations at the Easton network well (MTOW-2)

Figure 16. Groundwater elevations at the Wildlife Refuge network well (MTOW-3)

Figure 17. Groundwater elevations at the Rest Area network (MTOW-7)

Figure 18. Groundwater elevations at the Talbott Tree Farm network well (MTOW-13)
It is anticipated that as more data are collected and more severe storm events occur, recharge events will be evident on the water level hydrographs, and the relationship of depth to water and distance from a stream may be better identified and explained. For Year Fourteen, the rainfall event on April 6, 2006 (Figure 19) is evident as recharge at the Easton well (Figure 15, MTOW-2). Continuous measurements from the six new data loggers also have provided some evidence of a rainfall-recharge relationship, as shown at the Hahn Farm well (Figure 19).

Figure 19. Groundwater elevations and precipitation at the Hahn Farm well (MTOW-12)

Irrigation Water Use

For Year Fourteen, low precipitation early in summer 2006 affected irrigation, but not as dramatically as in 2005. Irrigation in June was the second highest for the month of June, and July was the third highest July total for the length of the study. In 2006, however, total irrigation pumpage was approximately 50 billion gallons (bg), which is the third highest irrigation amount following 72 bg pumped in 2005 and 52 bg in 1996.

Monthly and seasonal estimates of irrigation withdrawals are shown in Table 5. These data were calculated for the Imperial Valley by previously described methods. Total annual irrigation withdrawals, from highest to lowest, are as follows: 2005, 1996, 2006; 2001 and 2002 (equal); 2003; 2004; 1999; 1997 and 1995 (equal); and 1998 and 2000 (equal). Though more irrigation systems are added each year, the influence of rainfall during the irrigation season is the primary factor in determining the amount of irrigation that takes place. The greatest average irrigation withdrawals typically occur in July and August; September and June withdrawal amounts are much less.

The estimated monthly irrigation pumpage also is displayed graphically in Figure 20 with average monthly network precipitation. These pumpage values show a tendency toward lower irrigation amounts with increasing precipitation and vice versa, but also show that irrigation is dependent on the timing of precipitation. For example, only 30 bg were pumped in 2000 (Year Eight), even though Year Eight showed a deficit of 9.5 inches (Table 6). This was because significant precipitation fell during summer 2000, reducing the need for irrigation. Year Fourteen was the fifth driest of network operation, but also the fourth year in a row with below-average precipitation. The influence of reduced rainfall is evident in the increased amount of water withdrawn for irrigation and in lower groundwater levels throughout the study area.

Table 6 also shows that for 10 of the past 12 years, rainfall has been below the 30-year, historical average, although the timing of rainfall during the growing season has the most impact on the amount of irrigation withdrawals.

Table 5. Estimated Monthly Irrigation Withdrawals (billion gallons), Number of Irrigation Systems, Withdrawal per System, and Withdrawal Rank

Year	June	July	August	September	Total	\# Systems	BG/system	Rank
1995	2.6	14	10	11	38			8
1996	2.0	20	18	12	52			2
1997	2.6	19	14	2.0	38			8
1998	2.1	7.8	13	6.9	30	1622	. 018	10
1999	2.8	18	12	6.0	39	1771	. 022	7
2000	6.4	6.0	12	5.6	30	1799	. 017	10
2001	4.4	21	17	5.0	47	1818	. 026	3
2002	3.4	24	16	3.7	47	1839	. 026	3
2003	4.1	16	15	10	46	1867	. 025	5
2004	5.3	12	19	5.7	42	1889	. 022	6
2005	15	29	23	4.8	72	1909	. 037	1
2006	7.2	22	16	5.2	50	not available		
Average	4.8	17	15	6.5	44			

Note:

Total annual withdrawal may differ from sum of monthly withdrawals due to rounding error. Also, data regarding the number of systems in 1995-1997 are unavailable.

Table 6. Average Annual Precipitation, Annual Precipitation Surplus, Running Surplus, and Ranked Annual Precipitation and Irrigation
September-August
period

Network average Annual Running
Rank
precipitation (in.) surplus (in.) surplus (in.) $\overline{\text { Precip. Irrigation }}$

$1992-1993$	55.55	+18.79	+18.79	1	-
$1993-1994$	40.21	+3.45	+22.24	2	-
$1994-1995$	39.42	+2.66	+24.90	5	8
$1995-1996$	25.70	-11.06	+13.84	14	2
$1996-1997$	27.31	-9.45	+4.39	12	8
$1997-1998$	40.06	+3.30	+7.69	3	10
$1998-1999$	34.02	-2.74	+4.95	6	7
$1999-2000$	25.81	-10.95	-6.00	13	10
$2000-2001$	30.97	-5.79	-11.79	7	3
$2001-2002$	39.91	+3.15	-8.64	4	3
$2002-2003$	30.06	-6.70	-15.34	8	5
$2003-2004$	29.64	-7.12	-22.46	9	6
$2004-2005$	27.34	-9.42	-31.88	11	1
$2005-2006$	27.74	-9.02	-40.90	10	

[^1]

Figure 20. Estimated irrigation pumpage and average monthly precipitation, Imperial Valley
Note: Rain gauge 16 was excluded from network average precipitation computations from 1996-1997 through 2001-2002.

Summary

For Year Fourteen of the rain gauge network operation (September 2005-August 2006), the network received an average of 27.74 inches of precipitation, 6.57 inches less than the previous 13year average of 34.31 inches. Below-average precipitation fell during all four seasons. Only two months (April and July 2006) had 4.0 inches or more of precipitation, and seven months had less than 2.5 inches of precipitation. This was the third year in a row with less than 30.0 inches of annual precipitation falling in the network.

Traditionally, groundwater levels tend to peak in most wells in the Imperial Valley during the spring and early summer, then decline in late summer and fall as precipitation is transpired back into the atmosphere by growing crops and as a result of seasonal irrigation withdrawals. In Year Twelve, some wells declined throughout the entire year before showing a slight recovery in May 2004. For those wells, the highest water levels for the year were in September 2003. Therefore, fall 2004 brought about a marked increase in groundwater levels as the aquifer recovered from the previous dry weather. Since February 2005, as rainfall fell significantly below average, groundwater levels in most wells declined to the lowest levels recorded during the study. The Snicarte well, for example, went dry and prompted the decision to replace it with a deeper well nearby.

With an additional year of data gathered at the irrigation test site, an understanding of the relationship among precipitation, pumpage, stream flow in Crane Creek, and groundwater levels has been developed. It was found that groundwater levels remained above the level of Crane Creek, even during periods of irrigation, which indicates that the system is discharging to the stream even during the summer under irrigation conditions. Water levels on both sides of Crane Creek lower when the irrigation system is operating, which reduces groundwater discharge to the stream. Water levels were not lower than the stream, however, so there was no reversal of flow from the stream.

Ten pressure transducers installed at network groundwater-level observation wells have shown mixed results, but indicate that the amount of rainfall, depth to water, and distance to a nearby stream all influence how quickly and to what extent water levels rise in the aquifer after a precipitation event. The Easton well (MTOW-2) provides evidence that recharge is occurring over a fairly short time period (several days or less after a significant precipitation event). It is expected that the analysis of storm events of greater magnitude will provide greater insight in the future.

The third highest irrigation withdrawal for the study period occurred during Year Fourteen. This was due to the extremely dry conditions that occurred during the early part of the 2006 growing season.

References

Calsyn, D.E. 1995. Soil Survey of Mason County, Illinois. Illinois Agriculture Experiment Station Soil Report 146, U.S. Department of Agriculture, Natural Resources Conservation Service and University of Illinois, Urbana, Illinois.

Clark, G.R. 1994. Mouth of the Mahomet Regional Groundwater Model, Imperial Valley Region of Mason, Tazewell, and Logan Counties, Illinois. Illinois Department of Transportation, Division of Water Resources, Springfield, Illinois.

Hollinger, S.E. 1997. Continued Operation of a Raingage Network for the Imperial Valley Water Authority, Year Four: September 1995-August 1996. Illinois State Water Survey Contract Report 615, Champaign, Illinois.

Hollinger, S.E., and R.A. Peppler. 1996. Continued Operation of a Raingage Network for the Imperial Valley Water Authority, Year Three: September 1994-August 1995. Illinois State Water Survey Contract Report 597, Champaign, Illinois.

Hollinger, S.E., and R.W. Scott. 1998. Continued Operation of a Raingage Network for the Imperial Valley Water Authority, Year Five: September 1996-August 1997. Illinois State Water Survey Contract Report 625, Champaign, Illinois.

Hollinger, S.E., H.A. Wehrmann, R.D. Olson, and R.W. Scott. 2000. Operation of Rain Gauge and Ground-water Monitoring Networks for the Imperial Valley Water Authority, Year Seven: September 1998-August 1999. Illinois State Water Survey Contract Report 2000-12, Champaign, Illinois.

Hollinger, S.E., H.A. Wehrmann, R.D. Olson, R.W. Scott, and R. Xia. 1999. Operation of Rain Gauge and Ground-Water Monitoring Networks for the Imperial Valley Water Authority, Year Six: September 1997-August 1998. Illinois State Water Survey Contract Report 646, Champaign, Illinois.

Huff, F.A. 1970. Sampling errors in measurement of mean precipitation. Journal of Applied Meteorology 9:35-44.

Huff, F.A., and J.R. Angel. 1989. Frequency Distributions and Hydroclimatic Characteristics of Heavy Rainstorms in Illinois. Illinois State Water Survey Bulletin 70, Champaign, Illinois.

Panno, S.V., K.C. Hackley, K. Cartwright, and C.L. Liu. 1994. Hydrochemistry of the Mahomet Bedrock Valley Aquifer, east-central Illinois: Indicators of recharge and ground-water flow. Ground Water 32:591-604.

Peppler, R.A., and S.E. Hollinger. 1994. Installation and Operation of a Raingage Network for the Imperial Valley Water Authority, Year One: September 1992-August 1993. Illinois State Water Survey Contract Report 575, Champaign, Illinois.

Peppler, R.A., and S.E. Hollinger. 1995. Continued Operation of a Raingage Network for the Imperial Valley Water Authority, Year Two: September 1993-August 1994. Illinois State Water Survey Contract Report 583, Champaign, Illinois.

Sanderson, E.W., and A.G. Buck. 1995. Reconnaissance Study of Ground-Water Levels in the Havana Lowlands Area. Illinois State Water Survey Contract Report 582, Champaign, Illinois.

Scott, R.W., H.A. Wehrmann, and S.E. Hollinger. 2001. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Eight: September 1999-August 2000. Illinois State Water Survey Contract Report 2001-15, Champaign, Illinois.

Scott, R.W., H.A. Wehrmann, and S.E. Hollinger. 2002. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Nine: September 2000-August 2001. Illinois State Water Survey Contract Report 2002-07, Champaign, Illinois.

Walker, W.H., R.E. Bergstrom, and W.C. Walton. 1965. Preliminary Report on the Ground-Water Resources of the Havana Lowlands Region in West-Central Illinois. Illinois State Water Survey and Illinois State Geological Survey Cooperative Ground-Water Report 3, Champaign, Illinois.

Wehrmann, H.A., N.E. Westcott, and R.W. Scott. 2004. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Ten: September 2001-August 2002. Illinois State Water Survey Contract Report 2004-01, Champaign, Illinois.

Wehrmann, H.A., S. D. Wilson, and N.E. Westcott. 2005. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Eleven: September 2002-August 2003. Illinois State Water Survey Contract Report 2005-06, Champaign, Illinois.

Wilson, S.D., N.E. Westcott, K.L. Rennels, and H.A. Wehrman. 2008a. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Twelve: September 2003-August 2004. Illinois State Water Survey Contract Report 2008-06, Champaign, Illinois.

Wilson, S.D., N.E. Westcott, K.L. Rennels, and H.A. Wehrman. 2008b. Operation of Rain Gauge and Groundwater Monitoring Networks for the Imperial Valley Water Authority, Year Thirteen: September 2004-August 2005. Illinois State Water Survey Contract Report (in press), Champaign, Illinois.

Appendix A. Hydrographs, Imperial Valley Observation Well Network

Appendix A. Hydrographs, Imperial Valley Observation Well Network

This appendix shows hydrographs of groundwater levels in each of the Imperial Valley observation wells. The hydrographs also include monthly precipitation totals from the nearest rain gauge or average of nearby gauges from the Imperial Valley rain gauge network, and Illinois River stage for wells near the river. The hydrographs maintain a common y-axis range (25 feet).

Figure A-1. Groundwater depth and precipitation for MTOW-1

Figure A-2. Groundwater depth and Illinois River Stage for MTOW-1

Appendix A. (continued)

Figure A-3. Groundwater depth and precipitation for MTOW-2

Figure A-4. Groundwater depth and precipitation for MTOW-3

Appendix A. (continued)

Figure A-5. Groundwater depth and precipitation for MTOW-4

Figure A-6. Groundwater depth and precipitation for MTOW-5

Appendix A. (continued)

Figure A-7. Groundwater depth and Illinois River stage for MTOW-5

Figure A-8. Groundwater depth and precipitation for MTOW-6

Figure A-9. Groundwater depth and precipitation for MTOW-7

Figure A-10. Groundwater depth and Illinois River stage for MTOW-7

Appendix A. (continued)

Figure A-11. Groundwater depth and precipitation for MTOW-8

Figure A-12. Groundwater depth and precipitation for MTOW-9

Appendix A. (continued)

Figure A-13. Groundwater depth and Illinois River stage for MTOW-9

Figure A-14. Groundwater depth and precipitation for MTOW-10

Appendix A. (continued)

Figure A-15. Groundwater depth and precipitation for MTOW-11

Figure A-16. Groundwater depth and precipitation for MTOW-12

Appendix A. (concluded)

Figure A-17. Groundwater depth and precipitation for MTOW-13

Appendix B. Observed Groundwater Levels, Imperial Valley Observation Well Network

Appendix B. Observed Groundwater Levels, Imperial Valley Observation Well Network

Depth to Water (feet below land surface) at Imperial Valley Network Observation Wells

Date	Depth to Water (feet below land surface) at Imperial Valley Network Observation Wells												
	MTOW-1	MTOW-2	MTOW-3	MTOW-4	MTOW-5	MTOW-6	MTOW-7	MTOW-8	MTOW-9	MTOW-10	MTOW-11	MTOW-12	MTOW-13
3-01-1995	--	8.88	13.11	9.15	27.06	16.45	13.15	21.62	12.54	27.14	30.38	--	--
4-01-1995	--	7.45	12.94	9.12	23.87	16.20	12.82	21.31	10.52	26.84	30.48	11.49	--
5-01-1995	--	6.69	12.65	8.92	23.50	15.95	12.63	21.09	10.12	26.48	30.32	9.67	--
5-15-1995	--	3.50	10.50	8.78	22.67	15.16	11.12	20.80	11.12	25.93	28.76	7.97	--
6-01-1995	--	2.67	8.80	8.57	21.50	14.17	10.07	20.16	6.12	25.60	27.67	8.00	--
6-15-1995	--	4.51	8.07	7.64	18.24	13.15	9.74	19.03	5.26	25.79	26.11	8.68	--
7-01-1995	--	6.15	8.74	7.03	21.43	13.31	10.30	18.73	7.66	25.97	25.88	8.64	--
7-15-1995	--	6.10	9.08	6.87	24.49	13.60	10.52	18.69	8.80	25.90	25.68	9.71	--
8-01-1995	--	8.10	9.77	6.47	26.82	14.17	11.11	18.87	9.98	26.55	26.05	10.13	--
8-15-1995	--	8.80	10.38	7.33	30.47	14.67	11.41	19.12	11.21	26.01	26.45	11.12	--
9-01-1995	--	9.65	10.96	7.58	31.28	15.11	12.00	19.40	11.65	26.42	26.79	11.52	--
9-15-1995	--	10.19	11.65	7.82	31.93	15.47	12.44	19.66	12.24	26.57	27.22	11.86	--
10-01-1995	--	10.35	12.27	7.99	30.09	15.76	12.69	19.94	12.84	26.64	27.69	12.12	--
10-15-1995	--	10.40	12.81	8.17	32.79	16.05	12.95	20.21	13.29	26.75	28.02	12.13	--
11-01-1995	--	10.30	13.12	8.55	32.30	16.50	13.19	20.60	13.63	26.61	28.47	12.17	--
12-01-1995	--	10.35	13.62	8.85	30.70	16.60	13.45	21.10	13.09	27.00	29.43	12.39	--
3-01-1996	37.18	10.90	14.89	9.80	32.00	17.47	14.58	-.--	13.98	27.90	30.40	13.30	35.52
4-01-1996	37.19	10.77	15.01	10.07	33.77	17.70	15.20	22.67	14.90	28.07	30.92	13.34	35.76
5-01-1996	37.28	9.93	15.27	10.24	33.05	17.80	14.88	22.97	14.02	28.14	31.33	13.47	36.00
5-15-1996	--	8.84	14.97	10.34	32.04	17.63	14.72	23.09	12.90	28.14	31.36	13.03	36.08
6-01-1996	35.45	7.57	14.31	10.43	27.17	17.14	14.38	23.08	9.85	28.04	31.33	12.58	36.25
6-15-1996	--	7.62	14.07	10.44	23.36	16.78	14.25	22.76	8.64	28.01	31.17	12.54	36.32
7-01-1996	35.23	9.45	14.17	10.64	23.69	16.85	14.40	22.20	9.90	29.10	31.09	12.88	36.47
7-15-1996	--	10.20	14.65	10.82	25.20	17.38	14.72	22.35	10.51	29.14	31.31	13.37	36.70
8-01-1996	36.58	10.63	15.01	11.00	24.90	17.42	14.95	22.52	10.69	28.97	31.33	13.65	36.92
8-15-1996	--	11.30	15.39	11.21	24.41	18.00	15.18	22.69	10.72	30.22	31.45	14.07	37.14
9-01-1996	37.68	11.78	15.75	11.48	27.17	18.29	15.48	22.90	12.20	30.07	31.61	14.55	37.30
9-15-1996	--	12.02	16.12	11.75	29.16	18.72	15.82	23.09	13.55	30.22	31.85	14.81	37.50
10-01-1996	38.32	12.00	16.35	11.95	31.00	18.80	16.00	23.24	14.12	30.12	31.93	14.89	37.63
11-01-1996	38.32	11.97	16.89	12.42	32.66	19.04	16.43	23.60	14.73	30.30	32.06	15.19	37.73
12-01-1996	--	11.99	17.23	12.73	32.74	19.15	16.72	23.91	14.90	30.20	32.22	15.36	37.71

Note: Bold numbers are the shallowest groundwater levels for the calendar year; italic numbers are the deepest groundwater levels. Shaded areas distinguish between years.

Appendix B. (continued)

Depth to Water (feet below land surface) at Imperial Valley Network Observation Wells
Date MTOW-1 MTOW-2 MTOW-3 MTOW-4 MTOW-5 MTOW-6 MTOW-7 MTOW-8 MTOW-9 MTOW-10 MTOW-11 MTOW-12 MTOW-13

3-01-1997	38.41	10.07	18.05	13.40	27.94	19.00	17.18	24.70	10.43	29.90	33.10	15.24	37.87
4-01-1997	37.67	9.87	17.53	13.84	24.80	18.20	16.86	24.80	10.00	30.70	33.33	14.71	37.75
5-01-1997	37.27	10.50	17.27	13.95	27.95	17.98	16.78	24.88	11.62	30.42	33.40	14.65	37.56
6-01-1997	37.32	10.38	17.17	13.98	29.98	18.02	16.90	25.03	12.71	30.34	33.61	14.45	37.60
6-15-1997	--	--	--	--	--	--	--	--	--	31.45	--	--	--
7-01-1997	37.63	11.08	17.29	14.22	28.78	18.38	17.06	25.05	11.95	31.80	33.73	14.85	37.86
7-15-1997	--	11.54	17.45	14.35		19.00	17.24	25.12	12.67	31.45	33.78	15.17	38.15
8-01-1997	38.28	11.98	17.77	14.56	33.10	19.44	17.57	25.25	13.57	31.99	33.90	15.52	38.59
8-15-1997	--	12.19	17.94	14.68	33.70	19.55	17.74	25.35	14.07	31.79	33.97	15.37	38.84
9-01-1997	38.90	12.15	18.17	14.80	32.78	19.45	17.89	25.44	13.80	31.74	34.03	15.45	38.92
10-01-1997	38.59	12.25	18.51	14.75	35.43	19.51	18.14	25.58	14.72	31.77	34.14	15.52	38.75
11-01-1997	39.46	12.36	18.77	14.64	35.20	19.55	18.35	25.72	15.24	31.78	34.23	15.70	38.38
12-01-1997	--	11.97	19.11	14.60	34.95	19.70	18.65	25.90	15.10	31.51	34.41	15.87	38.08
3-01-1998	38.78	8.38	19.04	14.59	30.50	18.10	17.98	25.88	11.84	30.77	34.13	14.61	37.75
4-01-1998	37.91	6.25	18.41	14.58	25.95	16.78	17.14	25.21	9.04	29.95	33.85	13.61	37.52
5-01-1998	36.67	7.00	17.65	14.64	25.21	15.70	16.38	24.20	9.20	29.73	33.63	12.97	36.85
6-01-1998	36.00	6.23	16.92	13.66	24.02	14.18	15.08	22.22	8.95	29.15	32.93	11.82	35.38
7-01-1998	35.61	5.77	16.57	13.24	24.50	13.47	14.40	21.08	9.05	28.40	31.36	11.55	33.98
8-01-1998	--	9.13	16.27	13.00	29.10	14.42	14.40	20.60	10.65	28.79	30.47	11.87	33.60
9-01-1998	36.24	10.00	16.52	12.95	31.90	15.08	14.58	20.90	12.48	28.60	30.58	12.25	33.82
10-01-1998	36.48	10.55	16.72	12.78	34.30	15.68	14.72	21.25	13.70	28.60	31.10	12.65	34.07
11-01-1998	--	10.70	16.97	12.55	33.93	16.30	15.00	21.70	14.10	28.70	31.69	13.02	34.24
3-01-1999	35.48	8.74	16.82	12.50	27.25	15.22	14.54	22.92	10.61	28.67	31.75	12.31	35.03
4-01-1999	35.26	9.13	16.47	12.95	29.74	16.20	14.54	23.13	12.05	28.83	31.85	12.29	35.15
5-01-1999	35.16	6.42	16.27	13.25	26.73	16.06	14.48	23.17	10.38	30.28	31.63	12.01	35.25
6-01-1999	33.95	5.45	14.63	13.05	25.64	14.70	13.74	22.45	9.54	28.00	31.03	11.27	35.15
7-01-1999	34.23	7.19	13.56	12.90	26.50	14.30	13.60	21.74	9.74	27.80	30.23	11.20	34.94
8-01-1999	35.68	9.98	14.69	13.10	31.03	15.20	14.24	21.40	12.45	28.17	30.11	12.35	34.90
9-01-1999	36.30	10.82	14.83	13.30	32.84	15.92	14.55	21.18	13.56	28.10	30.37	12.85	34.88
10-01-1999	36.87	11.18	15.40	13.09	34.00	16.64	15.02	21.44	14.10	28.39	31.13	13.41	35.06
11-01-1999	--	11.30	15.71	13.00	34.42	17.00	15.28	21.72	14.60	28.50	31.51	13.69	35.00
12-01-1999	37.43	11.45	16.05	13.05	35.79	17.35	15.55	22.04	14.91	28.65	31.97	14.01	35.08

Note: Bold numbers are the shallowest groundwater levels for the calendar year; italic numbers are the deepest groundwater levels. Shaded areas distinguish between years.

Appendix B. (continued)

Depth to Water (feet below land surface) at Imperial Valley Network Observation Wells
Date MTOW-1 MTOW-2 MTOW-

3-01-2000	38.07	11.65	17.17	13.51	36.21	18.38	16.65	23.14	15.40	29.35	33.03	14.85	35.65
4-01-2000	38.17	11.47	17.45	13.87	36.12	18.61	16.92	23.51	15.20	29.56	33.31	14.99	35.92
5-01-2000	38.26	11.74	17.63	14.05	35.38	18.71	17.13	23.77	14.44	29.85	33.51	15.11	36.15
6-01-2000	38.40	10.70	17.85	14.40	34.37	18.59	17.21	24.05	13.65	29.74	33.67	15.12	36.44
7-01-2000	38.11	8.83	17.97	14.34	31.65	17.87	16.84	24.05	12.50	29.63	33.86	14.56	36.70
8-01-2000	35.89	10.24	17.22	14.47	32.50	18.37	16.97	24.05	12.35	30.12	33.71	14.53	37.14
9-01-2000	36.59	11.39	17.37	14.60	35.40	19.02	17.33	24.24	14.68	30.60	33.83	15.27	37.54
10-01-2000	37.08	11.79	17.65	14.55	36.88	19.04	17.62	24.47	14.97	30.70	33.98	15.32	37.65
11-01-2000	37.22	12.11	17.97	14.47	36.75	19.17	17.95	24.67	15.44	30.80	34.10	15.61	37.60
4-01-2001	36.18	9.19	17.77	14.59	28.07	17.49	17.54	24.17	10.69	30.13	34.18	14.83	37.30
5-01-2001	35.69	9.25	17.38	14.90	30.57	17.10	17.35	23.62	11.70	29.53	34.15	14.61	37.00
6-01-2001	35.82	9.08	17.12	14.98	32.71	16.87	17.35	22.47	12.45	29.51	34.18	14.39	36.81
7-01-2001	35.65	9.06	16.89	14.90	30.51	16.54	16.35	21.85	11.15	30.03	34.22	14.16	36.77
8-01-2001	36.93	11.50	17.51	15.00	34.70	17.35	16.97	21.98	13.75	31.21	34.68	14.98	37.03
9-01-2001	37.94	12.32	17.77	15.08	36.25	18.39	17.45	22.28	14.67	31.00	34.42	15.58	37.23
10-01-2001	38.18	12.58	17.97	14.94	36.55	18.76	17.60	22.75	14.70	30.98	34.63	15.90	37.23
11-01-2001	37.74	11.97	17.97	14.93	32.85	18.63	17.98	23.12	12.84	30.42	34.63	15.65	37.21
12-01-2001	37.64	12.10	17.88	14.69	34.08	18.46	17.97	23.37	13.67	30.40	34.63	15.69	37.06
1-01-2002	37.67	11.66	18.02	14.46	34.41	18.34	17.97	23.68	13.97	30.25	34.95	15.75	36.90
2-01-2002	37.89	10.95	18.11	14.35	35.49	18.32	18.15	23.83	14.51	29.88	34.61	15.75	36.81
3-01-2002	37.38	10.35	17.77	14.06	32.44	17.85	17.75	23.82	12.73	29.84	34.85	15.35	36.69
4-01-2002	37.31	10.57	17.69	14.00	30.58	17.64	17.64	23.64	11.92	29.84	34.68	15.19	36.62
5-01-2002	37.17	7.50	17.57	14.25	29.40	17.40	17.54	23.49	11.40	29.15	34.44	14.91	36.53
6-01-2002	34.44	7.30	15.72	13.39	22.34	15.62	16.05	22.12	7.42	28.76	34.08	13.30	35.91
7-01-2002	34.82	8.39	15.07	12.75	25.70	15.00	15.61	21.08	9.30	29.36	33.83	12.97	35.13
8-01-2002	34.82	10.00	15.62	13.82	31.10	15.93	16.17	21.01	12.40	28.73	33.66	13.71	35.36
9-01-2002	36.71	10.00	15.62	12.98	32.55	15.82	16.12	21.25	12.60	28.50	33.68	13.76	35.62
10-01-2002	37.06	11.09	15.97	13.21	34.32	16.20	16.36	21.55	14.00	28.79	33.88	14.17	35.62
11-01-2002	37.34	11.40	16.29	13.18	35.45	16.54	16.63	21.90	14.68	28.78	34.12	14.45	35.60
12-01-2002	37.58	11.58	16.49	12.88	35.10	16.93	16.88	22.24	15.15	29.02	34.35	14.74	35.68
1-01-2003	37.80	11.70	16.95	12.98	36.10	17.36	17.15	22.64	15.32	29.09	34.53	14.91	35.84
2-01-2003	37.94	11.84	17.10	13.17	36.60	17.70	17.34	23.00	15.57	29.26	34.78	15.07	36.04
3-01-2003	38.13	11.60	17.37	13.35	37.21	18.02	17.55	23.32	15.79	29.50	34.82	15.27	36.26
4-01-2003	37.67	10.89	17.52	13.53	36.40	18.24	17.73	23.69	15.84	29.60	34.95	15.29	36.50
5-01-2003	37.76	9.90	17.34	13.73	37.05	17.95	17.47	23.95	15.60	29.73	35.07	14.96	36.73
6-01-2003	37.11	9.82	16.95	13.69	32.90	17.37	16.82	23.72	13.38	29.92	35.07	14.58	37.01
7-01-2003	37.23	9.36	16.92	13.69	35.85	16.88	17.10	23.58	14.20	29.74	35.11	14.75	37.25
8-01-2003	38.09	10.40	18.18	13.61	32.10	16.88	17.05	23.22	12.52	30.40	35.08	14.46	37.59

Note: Bold numbers are the shallowest groundwater levels for the calendar year; italic numbers are the deepest groundwater levels. Shaded areas distinguish between years.

Appendix B. (concluded)

Depth to Water (feet below land surface) at Imperial Valley Network Observation Wells
Date MTOW-1 MTOW-2 MTOW-3 MTOW-4 MTOW-5 MTOW-6 MTOW-7 MTOW-8 MTOW-9 MTOW-10 MTOW-11 MTOW-12 MTOW-13

Appendix C. Site Descriptions, Imperial Valley Rain Gauge Network

Appendix C. Site Descriptions, Imperial Valley Rain Gauge Network

This appendix contains site descriptions of each rain gauge site in the IVWA network as of August 31, 2006. Sites that have been relocated since the network was established in August 1992 are so noted in the "Placement" portion of their site description. Sites with shaded descriptions have been removed from the network.

SITE DESCRIPTION		
Site Number: 1		
County: Tazewell	Latitude: $40^{\circ} 28^{\prime} 3^{\prime \prime}$	Longitude: $89^{\circ} 50^{\prime} 9$ "
Property Owner: Melvin Fornoff		
Address: 10200 Fornoff Road, Manito, IL 61546		
Telephone: 309-968-6653		
Permission Date: 8-10-92		
Installation Date: 8-25-92		
Gauge Mfrs. No.: 4695	Gauge ID No.: SWS 5068	
Placement: Near apple/pear trees, northeast of a garage. Property on east side of 450 E. in Tazewell County, north of 1000 N. Large dog. Gauge 15 meters northwest of lat/long reading. Station removed from the network in September 1995.		

SITE DESCRIPTION			
Site Number: 2			
County: Tazewell	Latitude: $40^{\circ} 28^{\prime} 42^{\prime \prime}$	Longitude: $89^{\circ} 45^{\prime} 54^{\prime \prime}$	
Property Owner: Ken Becker			
Address: 8479 Townline Road, Manito, IL 61546			
Telephone: 309-545-2207			
Permission Date: 8-15-92	Gauge ID No.: SWS 5030		
Installation Date: 8-25-92			
Gauge Mfrs. No.: 4723			
Placement: In back yard (grass) near garbage burner. Property on south side of 1100 N. in Tazewell County, west of 900 E. Gauge 2 meters west of lat/long reading.			

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 3		
County: Tazewell	Latitude: $40^{\circ} 28^{\prime} 56{ }^{\prime \prime}$	Longitude: $89^{\circ} 37{ }^{\prime} 33^{\prime \prime}$
Property Owner: Lonn Schleder		
Address: 11177 S. 14th Street, Pekin, IL 61554		
Telephone: 309-348-2447		
Permission Date: 8-10-92		
Installation Date: 8-25-92		
Gauge Mfrs. No.: 1463	Gauge ID No.: SWS	
Placement: Moved 5-13-94 to a position about 60 meters north-northeast of original position, which was in a back pasture along a wire fence between a white aluminum shed and a large tree. Present position is between a garage and another shed near a well. Property on northwest corner of the intersection of 1600 E and 1100 N . Gauge 50 meters north-northwest of lat/long reading.		

SITE DESCRIPTION		
Site Number: 4		
County: Mason	Latitude: $40^{\circ} 24^{\prime} 29^{\prime \prime}$	Longitude: $89^{\circ} 54^{\prime} 41^{\prime \prime}$
Property Owner: Ellis Popcorn (Maureen Hanks)		
Address: 24095 County Road 2330 E., Topeka, IL 61567		
Telephone: 309-535-3840		
Permission Date: 8-10-92		
Installation Date: 8-25-92	Gauge ID No.: SWS 6573	
Gauge Mfrs. No.: 7382		
Placement: South of large white office building, between two trees in a grassy area. Property on east side of 2340 E. in Mason County, northeast of Goofy Ridge. Gauge 10 meters south- southwest of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 5		
County: Mason	Latitude: $40^{\circ} 24^{\prime}$ 29"	Longitude: $89^{\circ} 50^{\prime} 19 "$
Property Owner: Joseph Meyer		
Address: 24234 County Road 2750 E., Topeka, IL 61567		
Telephone: 309-968-6378		
Permission Date: 8-10-92		
Installation Date: 8-25-92		
Gauge Mfrs. No.: 5985	Gauge ID No.: CDA 000130	
Placement: Next to stone drive in a pasture in front of house. Property on west side of 2750 E. in Mason County, south of 2500 N. Gauge 3 meters east of lat/long reading. Station removed from network in September 1995.		

SITE DESCRIPTION		
Site Number: 6		Longitude: $89^{\circ} 43^{\prime} 16^{\prime \prime}$
County: Mason	Latitude: $40^{\circ} 22^{\prime} 42^{\prime \prime}$	
Property Owner: Lawrence Whiteford		
Address: 22172 N. County Road 3400 E., Manito, IL 61546-7988		
Telephone: 309-968-6234		
Permission Date: 3-22-01		
Installation Date: 3-22-01	Gauge ID No.: SWS 5309	
Gauge Mfrs. No.: 5295		
Placement: Gauge was moved on 3-22-01 approximately 1.9 miles south-southeast of old location, or about 0.4 miles north of 2180 N. on 3400 E., Mason County. New location is in an open area west of machine shed. Old location was on west side of 3300 E. in Mason County, just south of 2400 N., 18 meters south of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 7		
County: Tazewell	Latitude: $40^{\circ} 24^{\prime} 24^{\prime \prime}$	Longitude: $89^{\circ} 37^{\prime} 29^{\prime \prime}$
Property Owner: David Van Orman		
Address: 5801 Warner Road, Green Valley, IL 61534		
Telephone: 309-352-5673		
Permission Date: 8-10-92		
Installation Date: 8-25-92		
Gauge Mfrs. No.: 5935	Gauge ID No.: --	
Placement: Moved in May 1993 to a position south of a barn with a green roof, near edge of field. Original position was 30 meters to the northeast, north of the same barn. Both positions are northwest of the house. Property located just east of Green Valley on south side of 600 N. in Tazewell County, just west of 1600 E. Gauge 17 meters west-northwest of lat/long reading.		

SITE DESCRIPTION		
Site Number: 8		
County: Mason	Latitude: $40^{\circ} 20^{\prime} 56^{\prime \prime}$	Longitude: $90^{\circ} 1^{\prime} 18^{\prime \prime}$
Property Owner: c/o Steve Havera, Forbes Biological Station		
Address: P.O. Box 49, Havana, IL 62644		
Telephone: 309-543-3950		
Permission Date: 6-3-02		
Installation Date: 6-3-02	Gauge ID No.: US148085	
Gauge Mfrs. No.: 2000		
Placement: New location as of 6-3-02, Illinois Natural History Survey station on Quiver Creek, 0.2 mile northeast of old location. From 4-20-00 to 6-3-02, was on Blakely property located on north side of 1950 N. in Mason County west of 1900 E., 0.5 mile northwest of old site east-southeast of house near a small tree.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 9		
County: Mason	Latitude: $40^{\circ} 19^{\prime} 41^{\prime \prime}$	Longitude: $89^{\circ} 55^{\prime} 55$
Property Owner: Mason State Tree Nursery		
Address: 17855 County Road 2400 E., Topeka, IL 61567		
Telephone: 309-535-2185		
Permission Date: 8-9-00		
Installation Date: 8-9-00		
Gauge Mfrs. No.: 5986	Gauge ID No.: CDA 000132	
Placement: Located about 400 yards south of office among several weather stations. Prior location from 5-14-93 to 8-9-00 at R.R. \#1, Box 19, Topeka. Original position from 8-24-92 to 5-14-93 was at R.R. \#1, Box 6, Topeka.		

SITE DESCRIPTION		
Site Number: 10		
County: Mason	Latitude: $40^{\circ} 19^{\prime} 58{ }^{\prime \prime}$	Longitude: $89{ }^{\circ} 48^{\prime} 53{ }^{\prime \prime}$
Property Owner: Paul Meeker		
Address: RR \# 1, Box 31, Forest City, IL 61532		
Telephone: 309-597-2163		
Permission Date: 8-10-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 4679	Gauge ID No.: SWS	
Placement: West of hedgerow on southwest edge of home property. Property is on north side of 1900 N. in Mason County, east of 2800 E., and the gauge is about 3 meters north of 1900 E. Gauge 5 meters northeast of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 11		
County: Mason	Latitude: $40^{\circ} 20^{\prime} 2^{\prime \prime}$	Longitude: $89^{\circ} 44^{\prime} 4^{\prime \prime}$
Property Owner: Louis Moehring		
Address: 32972 E. County Road 1900 N., Manito, IL 61546		
Telephone: 217-482-3320		
Permission Date: 8-10-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 3362	Gauge ID No.: SWS 4450	
Placement: North side (back) of house along a walk. Property is on northwest corner of intersection of 1900 N. and 3300 E. in Mason County. Gauge 12 meters southwest of lat/long reading.		

SITE DESCRIPTION		
Site Number: 12		
County: Tazewell	Latitude: $40^{\circ} 20^{\prime} 16^{\prime \prime}$	Longitude: $89^{\circ} 38^{\prime} 26^{\prime \prime}$
Property Owner: Harold Deiss		
Address: 1327 Route 29, San Jose, IL 62682		
Telephone: 309-247-3535		
Permission Date: 8-10-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 3346	Gauge ID No.: SWS 4439	
Placement: East side of Route 29 (1500 E.) in Tazewell County in a grassy area southwest of a red shed. Deiss house is 1/4 mile north. Just north of Day Ditch. Gauge 2 meters south of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 13		
County: Mason	Latitude: $40^{\circ} 15^{\prime} 43^{\prime \prime}$	Longitude: $90^{\circ} 0^{\prime} 48^{\prime \prime}$
Property Owner: Don Hahn		
Address: 18307 E. Hahn/Stelter Rd., Havana, IL 62644		
Telephone: 309-543-4660		
Permission Date: 8-11-92		
Installation Date: 8-25-92	Gauge ID No.: --	
Gauge Mfrs. No.: 5939		
Placement: Left side of front entrance drive near a short fence. Property on south side of the diagonal 1450 N., east of Route 92. Gauge 3 meters north-northeast of lat/long reading.		

SITE DESCRIPTION		
Site Number: 14		
County: Mason	Latitude: $40^{\circ} 15^{\prime} 52^{\prime \prime}$	Longitude: $89^{\circ} 56^{\prime} 33^{\prime \prime}$
Property Owner: Wayne Patterson (650 E. Taintor Rd., Springfield, IL 62702-1755)		
Address: R.R. \#1, Box 220, Easton, IL 62633		
Telephone: 309-543-4664		
Permission Date: 8-11-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 4678	Gauge ID No.: SWS 5098	
Placement: In a small clearing north of house. Property located on east side of 2200 E. in Mason County south of 1500 N. Correspondence address changed to that of Wayne Patterson on 3-26-94. Gauge 17 meters northwest of lat/long reading. Station removed from network in September 1995.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 15		
County: Mason	Latitude: $40^{\circ} 15^{\prime}$ 27"	Longitude: $89^{\circ} 50^{\prime} 22^{\prime \prime}$
Property Owner: c/o Joe Umbach		
Address: 25989 E. County Road 1300 N., Easton, IL 62633		
Telephone: 309-562-7611		
Permission Date: 8-12-92		
Installation Date: 8-24-92	Gauge ID No.: CDA 000136	
Gauge Mfrs. No.: 6462		
Placement: Along right side of the house lane which extends north from 1410 N. in Mason County between Route 10 and 2800 E. 1410 N. runs from southwest to northeast along Central Ditch. Gauge 2 meters north-northeast of lat/long reading.		

SITE DESCRIPTION		
Site Number: 16		
County: Mason	Latitude: $40^{\circ} 16^{\prime} 5^{\prime \prime}$	Longitude: $89^{\circ} 44^{\prime} 9 "$
Property Owner: Donald Osborn, Sr.		
Address: 32866 E. County Road 1450 N., Mason City, IL 62664		
Telephone: 217-482-5816		
Permission Date: 8-11-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 4666	Gauge ID No.: SWS 5059	
Placement: Along right side of drive near pigpen and road (1450 N.). Property located on north side of 1450 N. just west of 3300 E. Gauge 2 meters east of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 17		
County: Mason	Latitude: $40^{\circ} 16^{\prime} 51^{\prime \prime}$	Longitude: $89^{\circ} 38^{\prime} 25^{\prime \prime}$
Property Owner: Larry Jennings		
Address: 15316 County Road 3800 E., San Jose, IL 62682		
Telephone: 309-274-3781		
Permission Date: 8-11-92		
Installation Date: 8-24-92		
Gauge Mfrs. No.: 5280	Gauge ID No.: SWS 5317	
Placement: West of garage near back fence and animal petting area. Property located on 3800 E. in Mason County just north of 1500 N. Gauge 34 meters west of lat/long reading. Station removed from network in September 1995.		

SITE DESCRIPTION		
Site Number: 18		
County: Mason	Latitude: $40^{\circ} 11^{\prime} 32{ }^{\prime \prime}$	Longitude: $90^{\circ} 6^{\prime} 15^{\prime \prime}$
Property Owner: Vernon Heye		
Address: R.R. \#1, Bath, IL 62617		
Telephone: 309-546-2266		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: 5278	Gauge ID No.: SWS	
Placement: Co-located with groundwater well MTOW-3. Was located from Oct. 19, 2005March 27, 2006 on property of Alan Toncray about 1 mile SW of previous location. Prior to Oct. 19, 2005, was east of white shed near field on east edge of home property. Property located on north side of 900 N . in Mason County about 2 miles east of Bath. Gauge about 37 meters east-northeast of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 19		
County: Mason	Latitude: $40^{\circ} 11^{\prime} 1^{\prime \prime}$	Longitude: $90^{\circ} 0^{\prime} 19^{\prime \prime}$
Property Owner: Charles W. Lane		
Address: R.R. \#1, Box 51, Kilbourne, IL 62655		
Telephone: 309-538-4397		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: 4718	Gauge ID No.: SWS 5081	
Placement: Along a wire fence separating home property from pigpen, northwest of house. Property located on west side of Route 97 on southern end of a large curve between 900 N. and 800 N. Gauge 14 meters northwest of lat/long reading.		

SITE DESCRIPTION		
Site Number: 20		
County: Mason	Latitude: $40^{\circ} 11^{\prime} 46^{\prime \prime}$	Longitude: $89^{\circ} 54^{\prime} 56^{\prime \prime}$
Property Owner: Wanda Krause		
Address: R.R. \#1, Box 109, Easton, IL 62633		
Telephone: 309-562-7528		
Permission Date: 8-11-92		
Installation Date: 8-26-92	Gauge ID No.: US 148830	
Gauge Mfrs. No.: 3371	Placement: In yard of Jon Krause just north of east-west lane and west of lane to the Krause home. The gauge was moved to this position in early 1995. The previous location on the east side of 2400 E. in Mason County near Jon Krause mailbox was in a strawberry patch along the same lane about 250 meters to the west on the Wanda Krause property. Gauge 150 meters east of lat/long reading.	

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 21		
County: Mason	Latitude: $40^{\circ} 11^{\prime} 10^{\prime \prime}$	Longitude: $89^{\circ} 49^{\prime} 39^{\prime \prime}$
Property Owner: John Walters		
Address: 28030 E. County Road 850 N., Mason City, IL 62664		
Telephone: 309-562-7527		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: 6294	Gauge ID No.: CDA 00013A	
Placement: East of the house and driveway and southeast of a shed. Property located on a hill on the northeast corner of the intersection of 2800 E. and 850 N. in Mason County. Position previous to May 20, 1994 was between a windmill and a bush about 25 meters west of present position. Gauge 25 meters east of lat/long reading.		

SITE DESCRIPTION		
Site Number: 22		
County: Mason	Latitude: $40^{\circ} 10^{\prime} 46{ }^{\prime \prime}$	Longitude: $89{ }^{\circ} 44^{\prime} 28^{\prime \prime}$
Property Owner: Kirk Martin		
Address: 33534 E. County Road 930 N., Mason City, IL 62664		
Telephone: 217-482-3509		
Permission Date: 3-23-04		
Installation Date: 3-26-04		
Gauge Mfrs. No.: 4708	Gauge ID No.: SWS	
Placement: Gauge moved 1.25 miles north-northeast of previous location, 15-20 feet off local road, with field about 70 feet away. Was on a concrete slab with two two-by-fours attached to the base of the gauge, west of the house and lane on a ridge and located on north side of 800 N. in Mason County west of Route 29 and southwest of Mason City. Gauge 25 meters west of lat/long reading.		

Appendix C. (continued)

SITE DESCRIPTION		
Site Number: 23		
County: Mason	Latitude: $40^{\circ} 12^{\prime} 0^{\prime \prime}$	Longitude: $89^{\circ} 38^{\prime} 28^{\prime \prime}$
Property Owner: Dale C. Fancher		
Address: 9482 N. County Road 3800 E., Mason City, IL 62664-7209		
Telephone: 217-482-3506		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: 3773	Gauge ID No.: US 148832	
Placement: On the west edge of a garden located north of a wood shop and the house. Property located on the west side of 3800 E. in Mason County about a half mile north of Route 10, east of Mason City. Gauge 30 meters north-northwest of lat/long reading.		

SITE DESCRIPTION		
Site Number: 24		
County: Mason	Latitude: $40^{\circ} 6^{\prime} 26^{\prime \prime}$	Longitude: $90^{\circ} 11^{\prime} 58^{\prime \prime}$
Property Owner: Norman L. Fletcher		
Address: 3286 N. County Road 800 E., Bath, IL 62617		
Telephone: 309-546-2677		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: --		
Placement: North of a garage near a grapevine, northeast of the house. Property located on the east side of 800 E. in Mason County west of Route 78, just north of 300 N. Gauge 32 meters northeast of lat/long reading.		

Appendix C. (concluded)

SITE DESCRIPTION		
Site Number: 25		
County: Mason	Latitude: $40^{\circ} 6^{\prime} 14^{\prime \prime}$	Longitude: $90^{\circ} 8^{\prime} 0^{\prime \prime}$
Property Owner: Rocky Adkins		
Address: 11669 E. County Road 300 N., Chandlerville, IL 62627		
Telephone: 217-458-2587		
Permission Date: 8-11-92		
Installation Date: 8-26-92		
Gauge Mfrs. No.: 5947	Gauge ID No.: --	
Placement: Next to two tanks and a sign in a small grassy area surrounded by truck access. Property located at Adkins Farms on south side of 300 N. (east of Route 78) in Mason County. Gauge 2 meters south of lat/long reading. Station removed from network in September 1995.		

Appendix D. Instructions for Rain Gauge Technicians

Appendix D. Instructions for Rain Gauge Technicians

A. Use Central Standard Time Year-Around

From November through March, Illinois is in the Central Standard Time zone, so your watch will indicate the correct time and date to be noted on the chart. From April through October when Illinois is in the Central Daylight Time zone, subtract one hour from your watch reading.

B. Order of Servicing

1) Old Chart

a) Unlock and open (slide up) door on the side of the instrument case and then lock door in place to prevent it from falling.
b) Depress the bucket platform casting to mark the OFF time position on the chart (a vertical trace will be written by the pen).
c) Note the time on your watch, and move the pen point and arm away from the chart by pushing out on the pen shifter.
d) Lift up on the chart cylinder that contains the chart to disengage it from the chart drive, and remove it.
e) Remove the chart from the cylinder and write the OFF date and time on the chart on the red line at the right end of the chart.

2) Bucket

a) Remove the collector from the top of the gauge by rotating it clockwise to disengage the tongue-and-groove assembly.
b) Carefully lift the bucket off the weighing platform. If there is water in it and no antifreeze, dump the water on the ground.
c) Reposition the empty bucket on the platform.
d) Reinstall the collector by setting it on top of the rain gauge case and turning it counterclockwise until the tongue-and-groove assembly meshes.
e) During wintertime operation, when 2 inches (about one quart) of antifreeze is in the bucket to prevent freezing, leave the liquid in the bucket until the chart reading passes the 6 -inch mark. At that point, pour the bucket contents into a sealed container and dispose of properly. DO NOT POUR SOLUTION ONTO THE GROUND! If wintertime conditions prevail, recharge the empty bucket with 2 inches of antifreeze. Reposition the dry bucket on the platform and reinstall the collector assembly.
f) In the winter, stir the contents of the bucket to keep the antifreeze mixed with the water.
g) At any time of the year, once the collector is repositioned, check the gauge to make sure the collector orifice top edge is level.

3) New Chart

a) Copy the OFF time from the old chart to the ON time on the new chart (another red line on the end of the chart), and write your site number on the chart.
b) Clip the new chart to the cylinder, making sure the crease at the right end of the chart is sharp and the chart is tight on the cylinder.
c) Reinstall the chart cylinder onto the chart drive, making sure the chart cylinder and drive gears mesh. Simply push down on the cylinder and wiggle it a little. You should feel some resistance if done correctly.
d) Move the pen arm and point over to the chart cylinder with the pen bracket and rotate the cylinder counterclockwise until the pen point coincides with the correct ON time position.
e) Let the pen point rest right on the chart and depress the platform casting again to make a small, vertical line denoting the ON time position. This also ensures that the pen point is writing correctly. If it is not, check the tip of the pen point to see why it is not drawing. Replace if necessary. It helps if the word "ON" is written on the chart near the ON line for later chart editing. Rezero the pen point if necessary by turning the fine adjustment screw. It is a good idea to "zero" the pen near the 0.25inch mark to prevent evaporation from taking the pen point below the zero line.
f) When you are sure that everything is in order, carefully unlock the door, push the door down, and lock it in place for another month.

4) Data Logger

a) Plug HP200X Palmtop PC into the data logger and download data.
b) Transfer data to flash card.
c) Mail flash card and charts to ISWS.

5) Problems

a) If you notice anything unusual about the gauge or the chart drive, write a note on the upper right corner of the old chart.
b) If you think the problem requires immediate attention, call Nancy Westcott collect at 217-244-0884 or e-mail her at nan@uiuc.edu to relay the information. Situations worthy of immediate attention include questions concerning the operation described above, premature chart-drive stoppage, data logger problems, or unauthorized tampering with the gauge. Immediate repairs will be scheduled if necessary.
c) Write a note describing problems and send with the charts, when mailing charts to the ISWS.
d) Also, write a note or call when new supplies are needed: antifreeze, pen tips, batteries, charts, spare clock drive, envelopes, and stamps.

6) Annual Tasks

a) In the fall, usually November, the gauges are winterized. The evaporation shield is removed. Antifreeze is added to the bucket. The clock batteries are changed.
b) Usually in December, the batteries in the data loggers are changed by the ISWS field technician.
c) Usually in March or April, the antifreeze is removed as per 2e above, and the evaporation shield is reinstalled.
d) Over the span of two years, all gauges should be recalibrated and cleaned in the field by the ISWS field technician.

C. Change in Site Status

If the gauge is no longer wanted on the property, please contact Nancy Westcott. Either call her collect at 217-244-0884 or e-mail her at nan@uiuc.edu immediately so that new arrangements can be made. It is important to try to keep the sites near the same locations during the course of this project because precipitation generally can vary greatly over short distances.

Appendix E. Documentation, Imperial Valley Rain Gauge Network Maintenance, 2005-2006

Appendix E. Documentation, Imperial Valley Rain Gauge Network Maintenance, 2005-2006

This appendix documents major maintenance work carried out at sites in the Imperial Valley rain gauge network from September 1, 2005 through August 31, 2006.

1. Replaced electric clock at site 24 on 9-19-2005.
2. Calibrated gauges at sites 4 and 8 on 10-13-2005.
3. Moved the gauge at site 18 to a new location, to the property of Alan Toncray, about 1 mile SE of its previous location on the property of Vernon Hye on 10-19-2005.
4. Winterized, including changing clock batteries, removing evaporation shield, and adding anti-freeze to all gauges on 11-01-2005.
5. Replaced batteries in all data loggers on 11-14-2005.
6. Moved the gauge at site 18 to another location, the Mason County Wildlife Refuge and Recreation Area, so that the gauge is now co-located with the groundwater-level observation well MTOW-3 on 3-27-2006.

Appendix F. Hydrographs, Transducer Data at the Test Site

Appendix F. Hydrographs, Transducer Data at the Test Site

This appendix shows hydrographs of groundwater levels in each well in place at the test site. The data are not continuous on each hydrograph due to removal of the transducers at various wells at various intervals.

Figure F-1. Stage in Crane Creek at the downstream bridge

Figure F-2. Water level elevation in Well 1 at the test site

Appendix F. (Continued)

Figure F-3. Water level elevation in Well 2 at the test site

Figure F-4. Water level elevation in Well 3 at the test site

Appendix F. (Continued)

Figure F-5. Water level elevation in Well 4 at the test site

Figure F-6. Water level elevation in Well 5 at the test site

Appendix F. (Continued)

Figure F-7. Water level elevation in Well 6 at the test site

Figure F-8. Water level elevation in Well 7 at the test site

Figure F-9. Water level elevation in Well 8 at the test site

Figure F-10. Water level elevation in Well 9 at the test site

Appendix G. Annual Precipitation, Years One-Thirteen

Appendix G. Annual Precipitation, Years One-Thirteen

(Rain gauge \#16 omitted from Years 5-10)

Appendix G. (continued)

Appendix G. (concluded)

Appendix H. Precipitation Events, Total Precipitation, and Precipitation per Precipitation Event by Month and Season, 1992-2005

Appendix H. Precipitation Events, Total Precipitation, and Precipitation per Precipitation Event by Month and Season, 1992-2005

Month	Number of precipitation events												
	$\begin{gathered} \hline 1992- \\ 93 \end{gathered}$	$\begin{gathered} 1993- \\ 94 \end{gathered}$	$\begin{gathered} 1994- \\ 95 \end{gathered}$	$\begin{gathered} 1995- \\ 96 \end{gathered}$	$\begin{gathered} 1996- \\ 97 \end{gathered}$	$\begin{gathered} 1997- \\ 98 \end{gathered}$	$\begin{gathered} 1998-1 \\ 99 \end{gathered}$	$\begin{gathered} 1999- \\ 00 \end{gathered}$	$\begin{gathered} 2000- \\ 01 \end{gathered}$	$\begin{gathered} 2001- \\ 02 \end{gathered}$	$\begin{gathered} 2002- \\ 03 \end{gathered}$	$\begin{gathered} 2003- \\ 04 \end{gathered}$	$\begin{gathered} 2004 \\ 05 \end{gathered}$
September	10	8	6	6	6	6	8	8	10	7	3	7	4
October	10	5	7	9	11	7	11	6	10	17	8	7	16
November	13	7	10	3	9	8	14	17	11	12	7	9	9
December	9	9	8	5	5	10	6	14	21	9	2	8	5
January	9	8	5	8	13	12	19	11	18	4	6	8	12
February	5	6	3	4	8	7	17	21	8	9	5	6	7
March	10	6	6	7	8	8	6	9	7	12	6	12	4
April	11	12	19	6	11	12	18	14	14	9	6	5	8
May	16	7	16	25	15	16	15	16	14	13	10	16	9
June	13	13	15	11	14	17	12	12	11	10	11	7	8
July	21	9	16	10	6	15	9	11	10	10	5	14	5
August	21	12	18	4	15	16	9	17	14	10	11	11	11
Fall	33	20	23	18	26	21	33	31	31	36	18	23	29
Winter	23	23	16	17	26	29	42	46	47	22	13	22	24
Spring	37	25	41	38	34	36	39	39	35	34	22	33	21
Summer	55	34	49	25	35	48	30	40	35	30	27	32	24
Annual	148	102	129	98	121	134	144	156	148	122	80	110	98

Total precipitation, inches

Month	$\begin{gathered} 1992- \\ 93 \end{gathered}$	$\begin{gathered} 1993- \\ 94 \end{gathered}$	$\begin{gathered} 1994- \\ 95 \end{gathered}$	$\begin{gathered} 1995- \\ 96 \end{gathered}$	$\begin{gathered} 1996- \\ 97 \end{gathered}$	$\begin{gathered} 1997- \\ 98 \end{gathered}$	$\begin{gathered} 1998- \\ 99 \end{gathered}$	$\begin{gathered} 1999- \\ 00 \end{gathered}$	$\begin{gathered} 2000- \\ 01 \end{gathered}$	$\begin{gathered} 2001- \\ 02 \end{gathered}$	$\begin{gathered} 2002- \\ 03 \end{gathered}$	$\begin{gathered} 2003- \\ 04 \end{gathered}$	$\begin{gathered} 2004- \\ 05 \end{gathered}$
September	4.21	11.56	1.49	2.00	1.63	2.55	1.61	0.87	1.93	2.35	0.39	2.67	0.98
October	2.00	2.97	3.34	3.06	1.99	1.43	2.07	0.92	1.79	4.89	1.65	1.56	5.17
November	6.35	2.59	3.37	1.84	2.15	3.10	2.70	0.48	2.05	2.50	0.62	3.54	4.54
December	2.82	1.11	2.29	0.45	0.90	1.47	0.81	2.07	1.17	1.43	1.95	1.07	1.23
January	3.52	0.96	2.90	1.01	1.28	2.59	2.84	0.63	3.35	2.64	0.61	0.67	4.49
February	1.64	1.64	0.61	0.77	3.86	2.65	1.32	2.00	2.78	1.28	1.09	0.33	1.64
March	3.85	0.96	1.93	1.93	1.92	4.51	1.32	1.68	1.50	1.58	1.84	2.84	0.71
April	5.25	5.03	4.87	2.61	1.76	3.53	4.42	1.59	3.31	4.24	3.75	1.78	2.09
May	2.61	3.11	10.33	5.37	2.94	5.21	4.65	4.39	4.89	5.43	3.20	5.55	0.88
June	6.27	3.19	2.65	2.85	1.97	7.19	4.41	4.76	3.08	4.23	4.50	3.56	1.33
July	11.05	3.44	2.73	2.84	2.51	2.34	4.56	4.39	1.30	3.99	6.04	2.30	1.64
August	5.99	3.66	2.90	0.98	4.41	3.50	3.30	2.02	3.81	5.37	4.43	3.77	2.64
Fall	12.56	17.12	8.20	6.89	5.77	7.08	6.38	2.27	5.77	9.74	2.66	7.77	10.69
Winter	7.97	3.70	5.80	2.23	6.04	6.71	4.97	4.70	7.30	5.35	3.65	2.07	7.36
Spring	11.71	9.10	17.14	9.91	6.62	13.25	10.39	7.66	9.70	11.25	8.79	10.17	3.68
Summer	23.31	10.29	8.28	6.68	8.89	13.03	12.27	11.17	8.19	13.59	14.97	9.63	5.61
Annual	55.55	40.21	39.42	25.70	27.31	40.06	34.02	25.81	30.97	39.91	30.06	29.64	27.34

Appendix H. (concluded)

Month	Inches of precipitation per precipitation event												
	$\begin{gathered} 1992- \\ 93 \end{gathered}$	$\begin{gathered} 1993- \\ 94 \end{gathered}$	$\begin{gathered} 1994- \\ 95 \end{gathered}$	$\begin{gathered} 1995- \\ 96 \end{gathered}$	$\begin{gathered} 1996- \\ 97 \end{gathered}$	$\begin{gathered} 1997- \\ 98 \end{gathered}$	$\begin{gathered} 1998- \\ 99 \end{gathered}$	$\begin{gathered} 1999 \\ 00 \end{gathered}$	$\begin{gathered} 2000- \\ 01 \end{gathered}$	$\begin{gathered} 2001- \\ 02 \end{gathered}$	$\begin{gathered} 2002- \\ 03 \end{gathered}$	$\begin{gathered} 2003- \\ 04 \end{gathered}$	$\begin{gathered} 2004- \\ 05 \end{gathered}$
September	0.42	1.45	0.25	0.33	0.27	0.43	0.20	0.11	0.19	0.34	0.13	0.38	0.25
October	0.20	0.59	0.48	0.34	0.18	0.2	0.19	0.15	0.18	0.29	0.27	0.22	0.32
November	0.49	0.37	0.34	0.61	0.24	0.39	0.19	0.03	0.19	0.21	0.10	0.39	0.50
December	0.31	0.12	0.29	0.09	0.18	0.15	0.14	0.15	0.06	0.16	0.65	0.13	0.25
January	0.39	0.12	0.58	0.13	0.10	0.22	0.15	0.06	0.19	0.66	0.10	0.08	0.37
February	0.33	0.27	0.20	0.19	0.48	0.38	0.08	0.10	0.35	0.14	0.14	0.06	0.23
March	0.38	0.16	0.32	0.28	0.24	0.56	0.22	0.19	0.21	0.13	0.23	0.24	0.18
April	0.48	0.42	0.26	0.43	0.16	0.29	0.25	0.11	0.24	0.47	0.42	0.36	0.26
May	0.16	0.44	0.65	0.21	0.20	0.33	0.31	0.27	0.35	0.42	0.32	0.35	0.10
June	0.48	0.25	0.18	0.26	0.14	0.42	0.37	0.40	0.28	0.42	0.45	0.51	0.17
July	0.53	0.38	0.17	0.28	0.42	0.16	0.51	0.40	0.13	0.40	1.01	0.16	0.33
August	0.29	0.31	0.16	0.25	0.29	0.22	0.37	0.12	0.27	0.54	0.74	0.34	0.24
Fall	0.38	0.86	0.36	0.38	0.22	0.34	0.19	0.07	0.19	0.27	0.15	0.34	0.37
Winter	0.35	0.16	0.36	0.13	0.23	0.23	0.12	0.10	0.16	0.24	0.28	0.09	0.31
Spring	0.32	0.36	0.42	0.26	0.19	0.37	0.27	0.20	0.28	0.33	0.40	0.31	0.18
Summer	0.42	0.30	0.17	0.27	0.25	0.27	0.41	0.28	0.23	0.45	0.55	0.30	0.23
Annual	0.38	0.39	0.31	0.26	0.23	0.30	0.24	0.17	0.21	0.33	0.38	0.27	0.28

Note: the tables are based on the total number of precipitation events in a given month, season, or year.

Appendix I. Documentation of Precipitation Events

 in the Imperial Valley, 2005-2006
Appendix I. Documentation of Precipitation Events in the Imperial Valley, 2005-2006

This appendix documents all storm event amounts, start times, and durations, and notes those that exceed an expected event amount (for 1-year to 100-year recurrence intervals, Table I-1) during the period September 1, 2005-August 31, 2006 (Table I-2). Table I-3 documents the storm event amounts for each gauge. The maximum storm amount in a given network storm period is used to compute the recurrence interval for a given precipitation event. The same information for previous years is found in Scott et al. (2002), Wehrmann et al. (2004, 2005), and Wilson et al. (2008 a, b). Individual network storm durations of one hour to ten days were considered. The precipitation amounts and storm durations for 1- to 100-year recurrence intervals for west-central Illinois are given in Table I-1 (Huff and Angel, 1989).

To determine the return frequency of any storm in Table I-2 or I-3, obtain the storm duration from the tables, then look in the left-hand column of Table I-1 to locate the storm duration that equals or just exceeds the storm duration in Table I-2 or I-3. If the precipitation for the event at any gauge in Table I-2 or I-3 exceeds the amount in Table I-1, obtain the return frequency by looking at the heading of the right-hand column that the precipitation amount exceeds. For example, Table I-3 indicates storm number 1647 has a duration of 21 hours. This storm duration falls between the 18and 24 -hour storm duration in Table I-1. Assume a 24 -hour storm duration. Table I-3 indicates the gauge at site 19 recorded precipitation equal to 3.72 inches. Therefore, site 19 exceeded the 2 -year return frequency amount (3.02 inches) for a 24 -hour storm.

Table I-3 indicates whether the maximum precipitation for the storm exceeds the expected amount for the observed storm duration (1-year to 100-year recurrence intervals) considered. A storm recurrence frequency of 50 years means that a storm of this intensity and duration would be expected once every 50 years.

Table I-1. Precipitation Amounts in Central Illinois for Different Storm Durations and Recurrence Intervals (Huff and Angel, 1989)

Storm duration	Precipitation (inches) for given recurrence interval						
	$1-Y r$	$2-Y r$	$5-Y r$	$10-Y r$	$25-Y r$	$50-Y r$	$100-Y r$
1 hour	1.18	1.42	1.77	2.09	2.50	2.86	3.25
2 hours	1.48	1.78	2.22	2.62	3.14	3.59	4.08
3 hours	1.61	1.93	2.41	2.85	3.41	3.89	4.43
6 hours	1.89	2.26	2.82	3.33	3.99	4.56	5.19
12 hours	2.17	2.62	3.27	3.87	4.63	5.29	6.02
18 hours	2.28	2.75	3.46	4.09	4.90	5.59	6.37
24 hours	2.52	3.02	3.76	4.45	5.32	6.08	6.92
48 hours	2.81	3.38	4.19	4.86	5.78	6.62	7.51
72 hours	3.05	3.70	4.55	5.26	6.15	7.25	8.16
5 days	3.48	4.17	5.11	5.84	6.96	7.98	9.21
10 days	4.29	5.12	6.27	7.10	8.19	9.10	10.18

Table I-2. Documentation of Maximum Storm Amounts in the Imperial Valley, 2005-2006

Storm Number	Storm Start Day	Start Time (CST)	Storm Duration (Hours)	Number Gauges with Precipitation	Network Average Precipitation (inches)	Storm Average Precipitation (inches)	Network Maximum Precipitation (inches)	Gauge No. with Maximum	Storm Recurrence Frequency
September-05									
1591	8	1700	9	18	0.16	0.18	0.62	24	
1592	13	2200	9	19	0.32	0.34	0.68	20	
1593	15	1300	7	18	0.25	0.28	0.59	24	
1594	16	800	3	5	0.01	0.04	0.05	3	
1595	19	100	4	10	0.12	0.23	0.80	2	
1596	19	1400	7	20	0.58	0.58	1.33	2	
1597	23	700	5	3	0.02	0.15	0.38	24	
1598	24	400	2	2	0.01	0.13	0.17	2	
1599	25	900	7	20	0.08	0.08	0.17	23	
1600	28	1300	6	20	0.82	0.82	1.34	18	
October-05									
1601	2	1500	3	4	0.03	0.13	0.36	3	
1602	20	500	26	20	0.8	0.8	1.01	24	
1603	23	1600	6	19	0.04	0.05	0.08	15	
1604	30	1900	4	20	0.13	0.13	0.22	13	
1605	31	700	19	20	0.24	0.24	0.51	16	
November-05									
1606	4	1200	2	3	0.01	0.04	0.05	3	
1607	5	700	4	11	0.02	0.04	0.04	6	
1608	5	2000	8	20	0.79	0.79	1.30	2	
1609	6	700	4	5	0.02	0.07	0.12	2	
1610	12	1600	11	17	0.13	0.15	0.39	6	
1611	14	1500	12	20	0.16	0.16	0.28	12	
1612	15	600	11	20	0.34	0.34	0.51	19	
1613	27	200	12	20	0.18	0.18	0.42	12	
1614	27	1700	20	20	0.99	0.99	1.55	2	
December-05									
1615	1	300	11	19	0.11	0.12	0.24	12	
1616	3	1800	8	11	0.03	0.05	0.08	7	
1617	6	700	4	3	0.01	0.04	0.04	4	
1618	8	1200	10	20	0.12	0.12	0.16	4	
1619	11	1900	7	4	0.01	0.06	0.08	19	
1620	14	300	13	19	0.09	0.10	0.25	23	
1621	15	800	7	10	0.02	0.04	0.05	12	
1622	24	2000	18	20	0.46	0.46	0.73	12	
1623	30	1300	5	20	0.11	0.11	0.17	2	
January-06									
1624	2	500	8	20	0.98	0.98	1.88	24	
1625	10	1700	8	20	0.18	0.18	0.25	2	
1626	13	100	17	20	0.65	0.65	0.89	22	
1627	20	1400	12	20	0.44	0.44	0.71	2	
1628	28	1000	26	20	0.89	0.89	1.63	2	

Table I-2. Documentation of Maximum Storm Amounts in the Imperial Valley, 2005-2006

February-06									
1629	11	700	6	7	0.02	0.06	0.17	15	
1630	15	2400	18	20	0.13	0.13	0.41	2	
March-06									
1631	5	500	10	19	0.12	0.13	0.25	2	
1632	6	400	10	11	0.02	0.04	0.05	12	
1633	7	1900	7	20	0.17	0.17	0.29	2	
1634	8	1000	7	19	0.08	0.08	0.20	2	
1635	8	2000	10	12	0.07	0.11	0.42	2	
1636	9	900	19	20	0.42	0.42	0.58	7	
1637	10	700	7	8	0.02	0.04	0.08	11	
1638	11	1900	5	20	0.62	0.62	1.09	2	
1639	12	800	15	20	0.08	0.08	0.16	24	
1640	13	300	3	20	0.22	0.22	0.34	20	
1641	21	100	15	17	0.12	0.14	0.46	8	
1642	27	1300	14	16	0.07	0.08	0.20	2	
1643	28	600	6	5	0.01	0.04	0.04	2	
1644	30	2300	13	20	0.13	0.13	0.26	22	
April-06									
1645	2	700	15	20	0.62	0.62	1.00	2	
1646	3	100	8	17	0.08	0.09	0.21	2	
1647	5	2200	21	20	1.75	1.75	3.72	19	2-yr, 24-hr
1648	6	2200	5	20	0.09	0.09	0.17	10	
1649	13	2300	3	3	0.03	0.21	0.27	3	
1650	14	900	4	12	0.05	0.09	0.25	18	
1651	16	1300	3	9	0.18	0.39	1.16	6	
1652	16	2100	2	3	0.01	0.09	0.09	22	
1653	18	2300	11	19	0.24	0.26	0.63	23	
1654	25	700	11	19	0.12	0.13	0.40	2	
1655	29	1000	40	20	1.00	1.00	1.75	22	
May-06									
1656	1	600	6	8	0.02	0.04	0.05	12	
1657	1	1900	7	16	0.55	0.69	1.12	15	
1658	2	600	5	6	0.01	0.04	0.05	3	
1659	3	1000	9	16	0.07	0.09	0.27	12	
1660	3	2200	5	7	0.01	0.04	0.05	12	
1661	10	1900	1	2	0.01	0.09	0.13	23	
1662	13	2200	16	15	0.06	0.09	0.17	21	
1663	15	400	32	20	0.57	0.57	1.02	22	
1664	16	1500	8	10	0.14	0.28	1.05	18	
1665	24	1500	3	20	0.63	0.63	1.24	13	
1666	24	2100	1	2	0.02	0.15	0.21	2	
1667	25	700	4	4	0.01	0.04	0.04	2	
1668	31	1700	27	20	0.87	0.87	1.29	19	
June-06									
1669	6	1300	4	18	0.38	0.42	0.63	12	
1670	10	800	8	14	0.08	0.11	0.20	16	
1671	11	900	3	6	0.03	0.09	0.21	2	
1672	17	1600	2	5	0.04	0.14	0.21	16	

Table I-2. Documentation of Maximum Storm Amounts in the Imperial Valley, 2005-2006

1673	18	700	9	9	0.13	0.29	0.86	15	
1674	19	1400	2	1	0.01	0.13	0.13	2	
1675	22	700	2	3	0.06	0.39	0.54	2	
1676	26	1600	11	12	0.24	0.41	1.21	3	
1677	27	700	3	8	0.02	0.04	0.05	3	
1678	28	300	5	4	0.01	0.06	0.13	8	
1679	30	800	8	9	0.06	0.12	0.38	24	
					ly-06				
1680	2	1900	7	15	0.26	0.35	1.04	15	
1681	3	600	4	13	0.03	0.04	0.05	12	
1682	3	1800	19	17	0.48	0.56	1.73	8	
1683	9	200	1	1	0.00	0.09	0.09	2	
1684	10	1900	39	20	0.64	0.64	1.51	23	
1685	12	1300	5	7	0.13	0.37	1.46	3	
1686	13	1700	6	8	0.24	0.59	1.56	4	
1687	19	1600	3	20	0.67	0.67	2.06	18	2-yr, 3-hr
1688	19	2300	6	5	0.01	0.04	0.05	3	
1689	20	800	5	20	0.39	0.39	0.67	12	
1690	21	1500	5	12	0.10	0.16	0.37	2	
1691	26	800	26	20	1.06	1.06	2.10	23	
					st-06				
1692	2	1900	15	18	0.26	0.29	0.79	2	
1693	6	1100	1	2	0.01	0.06	0.08	4	
1694	7	700	6	9	0.09	0.21	0.33	2	
1695	8	1800	21	20	1.42	1.42	2.36	19	
1696	10	1500	3	14	0.07	0.10	0.25	2	
1697	11	800	4	3	0.01	0.05	0.08	23	
1698	14	1200	2	4	0.03	0.15	0.17	16	
1699	18	2200	6	4	0.04	0.22	0.46	2	
1700	26	600	11	19	0.53	0.56	1.30	2	
1701	27	700	7	13	0.09	0.13	0.50	24	
1702	27	2200	21	20	0.29	0.29	0.67	2	
1703	29	600	12	19	0.04	0.05	0.08	10	

Appendix I-3. Precipitation (inches) Received at Each Station from Each Storm Period during the 2005-2006 Observation Period

[^2]
Appendix l-3. (continued)

1619121120051900 162012142005300 162112152005800 1622122420052000 1623123020051300
$\begin{array}{llllllllllllllllllllllll}7 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.04 & 0.08 & 0.00 & 0.00 & 0.00 & 0.00 & 0.08\end{array}$
 $7 \begin{array}{lllllllllllllllllllllllll}7 & 0.04 & 0.00 & 0.04 & 0.00 & 0.00 & 0.04 & 0.04 & 0.04 & 0.00 & 0.05 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 & 0.04 & 0.04\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}18 & 0.59 & 0.38 & 0.36 & 0.41 & 0.45 & 0.28 & 0.41 & 0.36 & 0.41 & 0.73 & 0.36 & 0.53 & 0.41 & 0.36 & 0.50 & 0.50 & 0.63 & 0.63 & 0.52 & 0.42\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}5 & 0.17 & 0.09 & 0.12 & 0.13 & 0.08 & 0.08 & 0.08 & 0.13 & 0.17 & 0.14 & 0.08 & 0.12 & 0.09 & 0.09 & 0.12 & 0.13 & 0.09 & 0.08 & 0.13 & 0.08\end{array}$
 $\begin{array}{llllllllllllllllllllllllll}8 & 0.25 & 0.14 & 0.21 & 0.17 & 0.17 & 0.17 & 0.21 & 0.21 & 0.21 & 0.19 & 0.13 & 0.25 & 0.17 & 0.21 & 0.17 & 0.17 & 0.17 & 0.16 & 0.16 & 0.13\end{array}$ $\begin{array}{llllllllllllllllllllll}17 & 0.89 & 0.66 & 0.49 & 0.68 & 0.50 & 0.42 & 0.80 & 0.72 & 0.71 & 0.62 & 0.57 & 0.58 & 0.49 & 0.54 & 0.72 & 0.73 & 0.76 & 0.89 & 0.79 & 0.42\end{array}$ $\begin{array}{lllllllllllllllllllllllll}12 & 0.71 & 0.41 & 0.42 & 0.43 & 0.48 & 0.30 & 0.46 & 0.43 & 0.43 & 0.58 & 0.39 & 0.48 & 0.34 & 0.42 & 0.43 & 0.43 & 0.42 & 0.47 & 0.42 & 0.41\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}26 & 1.63 & 1.31 & 0.96 & 1.10 & 1.01 & 0.58 & 0.93 & 0.88 & 0.71 & 1.02 & 0.63 & 0.85 & 0.75 & 0.74 & 0.68 & 0.72 & 0.59 & 1.03 & 1.00 & 0.73\end{array}$
$\begin{array}{llllllllllllllllllllllllllll}6 & 0.00 & 0.02 & 0.02 & 0.00 & 0.00 & 0.00 & 0.03 & 0.00 & 0.00 & 0.00 & 0.00 & 0.17 & 0.00 & 0.00 & 0.00 & 0.03 & 0.16 & 0.01 & 0.00 & 0.00\end{array}$ $\begin{array}{lllllllllllllllllllllllllllllllllll}18 & 0.41 & 0.27 & 0.20 & 0.08 & 0.18 & 0.16 & 0.15 & 0.12 & 0.09 & 0.14 & 0.22 & 0.10 & 0.05 & 0.16 & 0.02 & 0.08 & 0.04 & 0.04 & 0.04 & 0.08\end{array}$
$\begin{array}{lllllllllllllllllllllll}10 & 0.25 & 0.10 & 0.17 & 0.16 & 0.21 & 0.21 & 0.13 & 0.16 & 0.04 & 0.15 & 0.16 & 0.12 & 0.08 & 0.08 & 0.00 & 0.08 & 0.08 & 0.04 & 0.08 & 0.12\end{array}$ $\begin{array}{llllllllllllllllllllllll}10 & 0.00 & 0.00 & 0.04 & 0.02 & 0.04 & 0.00 & 0.04 & 0.00 & 0.04 & 0.05 & 0.00 & 0.04 & 0.04 & 0.00 & 0.00 & 0.04 & 0.04 & 0.00 & 0.04 & 0.00\end{array}$ $\begin{array}{llllllllllllllllllllllllll}7 & 0.29 & 0.09 & 0.21 & 0.16 & 0.16 & 0.20 & 0.12 & 0.22 & 0.17 & 0.14 & 0.08 & 0.12 & 0.13 & 0.16 & 0.17 & 0.26 & 0.17 & 0.17 & 0.17 & 0.12\end{array}$ $\begin{array}{llllllllllllllllllllll}7 & 0.20 & 0.14 & 0.18 & 0.04 & 0.04 & 0.17 & 0.04 & 0.04 & 0.00 & 0.05 & 0.04 & 0.04 & 0.04 & 0.04 & 0.04 & 0.08 & 0.12 & 0.08 & 0.08 & 0.08\end{array}$ $10 \begin{array}{lllllllllllllllllllllllllll}10.42 & 0.09 & 0.21 & 0.04 & 0.04 & 0.26 & 0.04 & 0.00 & 0.04 & 0.05 & 0.04 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00\end{array}$ $\begin{array}{llllllllllllllllllllllllll}19 & 0.40 & 0.42 & 0.42 & 0.40 & 0.58 & 0.37 & 0.50 & 0.41 & 0.43 & 0.37 & 0.41 & 0.51 & 0.20 & 0.45 & 0.58 & 0.50 & 0.41 & 0.28 & 0.24 & 0.54\end{array}$ $7 \begin{array}{lllllllllllllllllllllllllllll}7 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.08 & 0.00 & 0.04 & 0.00 & 0.04 & 0.00 & 0.04 & 0.00 & 0.04 & 0.00 & 0.04 & 0.04\end{array}$ $\begin{array}{llllllllllllllllllllllll}5 & 1.09 & 0.49 & 0.63 & 0.60 & 0.61 & 0.30 & 0.34 & 0.63 & 0.92 & 0.90 & 0.40 & 0.69 & 0.78 & 0.75 & 0.77 & 0.78 & 0.47 & 0.12 & 0.21 & 0.84\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}15 & 0.09 & 0.09 & 0.13 & 0.08 & 0.09 & 0.08 & 0.08 & 0.04 & 0.09 & 0.09 & 0.04 & 0.08 & 0.04 & 0.08 & 0.08 & 0.04 & 0.08 & 0.08 & 0.08 & 0.16\end{array}$
$\begin{array}{llllllllllllllllllllllllllllll}3 & 0.12 & 0.10 & 0.09 & 0.26 & 0.17 & 0.13 & 0.17 & 0.30 & 0.26 & 0.23 & 0.27 & 0.26 & 0.31 & 0.21 & 0.30 & 0.34 & 0.30 & 0.17 & 0.17 & 0.29\end{array}$ $\begin{array}{lllllllllllllllllllllllll}15 & 0.00 & 0.24 & 0.21 & 0.00 & 0.16 & 0.46 & 0.04 & 0.04 & 0.04 & 0.33 & 0.21 & 0.08 & 0.12 & 0.12 & 0.08 & 0.04 & 0.04 & 0.00 & 0.12 & 0.08\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}14 & 0.20 & 0.00 & 0.08 & 0.08 & 0.09 & 0.04 & 0.08 & 0.04 & 0.00 & 0.14 & 0.04 & 0.12 & 0.04 & 0.04 & 0.00 & 0.12 & 0.00 & 0.04 & 0.08 & 0.13\end{array}$ $\begin{array}{llllllllllllllllllllllllllll}6 & 0.04 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.04 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00\end{array}$ $\begin{array}{lllllllllllllllllllllllllllll}13 & 0.16 & 0.10 & 0.16 & 0.04 & 0.08 & 0.17 & 0.16 & 0.08 & 0.09 & 0.09 & 0.04 & 0.12 & 0.08 & 0.20 & 0.08 & 0.22 & 0.17 & 0.26 & 0.25 & 0.13\end{array}$
151.000 .670 .750 .810 .630 .470 .710 .930 .701 .00
 $\begin{array}{lllllllllllllllllllllllll}21 & 1.02 & 1.00 & 0.88 & 0.82 & 0.65 & 1.55 & 1.71 & 1.34 & 1.17 & 1.05 & 2.78 & 2.06 & 1.60 & 3.24 & 3.72 & 2.50 & 2.13 & 1.89 & 1.89 & 2.05\end{array}$ $\begin{array}{llllllllllllllllllllll}5 & 0.08 & 0.09 & 0.08 & 0.13 & 0.08 & 0.09 & 0.09 & 0.17 & 0.08 & 0.09 & 0.09 & 0.09 & 0.04 & 0.13 & 0.08 & 0.13 & 0.08 & 0.04 & 0.04 & 0.13\end{array}$

Notes: *Duration specified in hours. Values in boldface type exceed one-year storm recurrence frequency.

Appendix l-3. (continued)

[^3]
Appendix I-3. (concluded)

1682	7032006	1800	
1683	7092006	200	
1684	7102006	1900	
1685	7122006	1300	
1686	7132006	1700	
1687	7192006	1600	
1688	7192006	2300	
1689	7202006	800	
1690	7212006	1500	
1691	7262006	800	
1692	8022006	1900	
1693	8062006	1100	
1694	8072006	700	
1695	8082006	1800	
1696	8102006	1500	
1697	812006	800	
1698	8142006	1200	
1699	8182006	2200	
1700	8262006	600	
1701	8272006	700	
1702	8272006	2200	
1703	8292006	600	

	0.2	140.6	0.69	0.95	1.73	0.380 .5	0.47	0.69	. 310.6	0.680 .00	0.00			0.29	
	0.0	0.000 .00	0.00	0.00	0.00	0.000 .00	0.0	0.0	0.000 .00	0.00	0.00	0.00	0.00	0.00	0.000 .00
39	0.20	0.750 .37	0.	0.55	0.85	0.21	0.4	1.0	0.60	0.8	0.6	. 5	0.85	. 28	49
5	0.0	1.460 .00	0.0	0.00	0.00	0.000 .00	0.00	0.00	0.000 .00	0.00	0.34	0.0	0.13	0.13	0.000 .25
6	0.00	0.98	0.00	0.69	0.72	0.000 .00	0.0	0.0	0.000 .00	0.00	0.2	0.0	0.0	0.2	0.15
3	0.21	0.400 .21	0.34	0.57	1.09	0.340 .0	. 0	0.9	1.630 .4	0.092 .0	1.9	0.4	0.3	. 1	0.51
	0.04	0.050 .00	0.00	0.00	0.00	0.000 .0	0.00	0.05	0.000 .0	0.000 .0	0.0	0.0	0.0	0.0	0.000 .00
	0.3	0.31	0.51	0.22	0.47	0.500 .5	0.52	0.67	0.13	0.35	0.42	0.35	0.39	0.34	0.420 .08
5	0.37	0.220 .29	0.22	0.13	0.	0.090 .04	0.04	0.32	0.00	0.000 .0	0.0	0.00	0.00	0.00	0.130 .00
26	0.34	0.510 .55	0.8	0.3	0.	1.081 .00	1.1	1.3	1.07	2.000 .5	1.11	1.2	1.6	1.69	2.100 .38
15	0.79	0.140 .37	0.08	0.61	0.13	0.130 .09	0.04	0.00	0.130 .09	0.04	0.38	0.30	0.00	0.26	
1	0.04	0.0	0.00	0.00	0.00	0.000 .00	0.00	0.00	0.0	0.	0.00	0.00	0.00	0.00	0.000 .00
6	0.33	0.000 .3	0.	0.00	0.30	0.250 .17	0.21	. 05	0.130 .0	0.000 .00	0.0	0.0	0.0	0.00	. 00
21	1.58	0.401 .35	1.46	1.37	1.98	1.601 .44	1.72	1.91	1.181 .6	1.910 .9	2.36	1.2	1.2	. 30	1.700 .16
3	0.2	0.140 .12	0.17	0.04	0.08	0.120 .12	. 08	0.05	0.040 .00	0.000 .08	0.00	0.00	0.0	0.0	0.000 .04
	0.00	0.000 .00	0.00	00	0.00	0.000 .00	0.00	0.00	0.000 .00	0.000 .00	0.00	0.00	0.0	0.0	0.080 .00
2	0.00	0.000 .00	0.00	0.00	0.00	0.000 .00	0.00	0.00	0.000 .13	0.170 .00	,	0.0	0.0	0.17	0.120 .00
	0.46	0.250 .04	0.00	0.13	0.00	0.000 .00	0.00	0.00	0.000 .00	0.000 .00	0.00	0.0	0.00	0.00	0.000 .00
11	1.30	1.120 .34	0.42	0.6	0.16	0.380 .25	1.18	0.95	0.080 .3	0.910 .2	0.00	0.1	0.9	0.3	0.750 .05
	0.00	0.000 .00	0.	0.00	0.04	0.000 .00	. 04	. 05	0.040 .04	0.040 .21	0.1	0.18	0.1	0.12	0.120 .50
21	0.67	0.370 .55	0.17	0.09	0.33	0.580 .33	0.08	0.23	0.610 .04	0.560 .49	0.04	0.08	0.04	0.12	0.1
	0.04														

Notes: *Duration specified in hours. Values in boldface type exceed one-year storm recurrence frequency.

를

[^0]: Notes: General Soil Map Units are from Calsyn (1995). MTOW = Mason-Tazewell Observation Well.

[^1]: 1971-2000 30-year average 37.82 (Havana)
 1971-2000 30-year average 35.70 (Mason City)
 1971-2000 30-year average 36.76 (average of Mason City and Havana used to determine surplus)

[^2]: Notes: *Duration specified in hours. Values in boldface type exceed one-year storm recurrence frequency.

[^3]: Notes: *Duration specified in hours. Values in boldface type exceed one-year storm recurrence frequency.

