Mr. Jeff Smith, Chairman
Imperial Valley Water Authority
25865 E. County Road 1000 N
Easton, IL 62633

Dear Chairman Smith:
The Illinois State Water Survey (ISWS), under contract to the Imperial Valley Water Authority (IVWA), has operated a network of rain gauges in Mason and Tazewell Counties since August 1992 and a network of groundwater observation wells since 1994. The purpose of the rain gauge and groundwater observation well networks is to collect long-term data to determine the impact of groundwater withdrawals during dry periods and during the growing season, and the rate at which the aquifer recharges. This letter serves as the year end report for Year 22 which covers the time period from September 1, 2013 through August 31, 2014.

The groundwater observation well network consists of thirteen wells, MTOW-01 through MTOW-13, and was established in 1995-96. The observation wells are drilled wells between 2 and 6 inches in diameter. With the exception of MTOW-05 and MTOW-09, all wells are equipped with data loggers that electronically log the groundwater level data. The data loggers were installed in 2004 and 2005.

In Year 15, a new well was drilled to replace MTOW-1. This new well, named Snicarte \#2, or MTOW-1A has taken the place of the original well (MTOW-01 or Snicarte \#1) within the monitoring well network.

In accordance with our agreement, each well, with the exception of MTOW-05 and MTOW-09, is visited by ISWS personnel during the first few days of the month during irrigation season and approximately bi-monthly during the non-irrigated portion of the year.

A 25-site rain gauge network (Figure 1) was established in late August 1992 with approximately 5 miles between gauges. The network was reduced to 20 sites in September 1996. The rain gauge network was maintained monthly by a Mason County resident, Bob Ranson through July 2014. It is now maintained by ISWS field technician Dana Grabowski with Karen Brides. During these visits data are downloaded and other routine services performed and major maintenance and repairs as needed.

Figure 1. Configuration of the 13-site observation well and 25-site rain gauge networks.
Data reduction activities during Year 22 of network operation are similar to those performed during the previous 21 years. Each month, hourly rainfall amounts are totaled from 15minute digital data and are placed into an array of values for the 20 gauges. This data array is used to check for spatial and temporal consistency between gages, and to divide the data into storm periods. If the digital data are missing, the hourly amounts are estimated based on an interpolation of values from the nearest surrounding gauges.

Groundwater levels for each well for the period of record (September 1, 2013-August 31, 2014) are presented in Appendix A. For MTOW-05, and -09 their entire period of record is shown because these wells do not have digital recorders and have only been measured periodically since 2005. These two wells have been shown to mimic the stage in the Illinois River. Stage data from the Illinois River can be used, if necessary to recreate groundwater levels in those regions of the study area. Each hydrograph also contains the daily precipitation for the nearest rain gauge.

Since 1995, the IVWA has estimated irrigation pumpage from wells in the Imperial Valley based on electric power consumption. Menard Electric Cooperative provides the IVWA with electric power consumption data for the irrigation services they provide during the growing season (June-September). The pumpage estimate assumed that application rates for the irrigation wells with electric pumps in Menard Electric Cooperative also are representative of other utilities and other energy sources. Past estimates were based on the assumption that 33 percent of the irrigation wells were in Menard Electric Cooperative in 1995-1997, 40 percent in 1998-2001.

In 2002, the U.S. Geological Survey (USGS) updated the formula used to calculate pumpage by closely measuring the pumping rate at 77 irrigation systems serviced by Menard Electric. The updated formula provides estimates that are appreciably lower than the previous formula, by approximately 20 percent. Therefore, irrigation withdrawals for the years 1997 to the present were recalculated using the new formula, replacing earlier published estimates (reports through Year 12 use the original formula).

The Year 22 rain gauge dataset was used to produce summaries for all storm data for each station and the network; monthly, seasonal, and annual rainfall totals; analysis of the rainfall and groundwater level fluctuations; the data obtained from the long-term monitoring well network; the database showing the individual storms in the Imperial Valley region; and an updated version of the irrigation pumpage data.

Precipitation Analysis

The Year 22 network precipitation of 32.63 inches was 1.19 inches below the previous 21year's average of 33.82 inches. Overall, Year 22 was the twelfth wettest in the 22 years of network operation. Summer was the fourth wettest summer, and spring the third driest spring of 22 years. Table 1 gives the monthly precipitation totals for each rain gauge within the network during Year 22.

Figure 2 presents the 22-year network average, and Figure 3 presents the annual precipitation pattern for Year 22. During Year 22, annual gauge totals varied from 28.43 inches at site 8 to 36.78 inches at site 18 (Figure 3). Eleven-inch differences between gauges in annual precipitation amounts are not unusual during any given year, representing natural variability. If large differences between individual gauges are repeated year after year, this would suggest possible differences caused by differences in gauge exposure to the wind or by measurement errors. Gauges that are overly sheltered (Site 8), or with little or no shelter from the wind (most of the gage sites) can underestimate precipitation under strong wind conditions.

October 2013, June 2014 and August 2014 received precipitation more than 1 inch above the monthly network average during Year 22. September 2013, November 2013, April 2014 and May 2014 received precipitation that was at least 1 inch below the network average (Figures 4-9). The network received 22.92 inches less precipitation than in the wettest year (1992-1993), and 5.72 inches more than the driest year (2011-2012) of the 22 years of network observations. Although the annual total was fairly average, there were notable differences between the spring and summer seasons, ranging from 4.20 inches below average in spring 2014 to 5.47 inches above average in summer 2014.

Table 1. Monthly Precipitation Amounts (inches), September 2013-August 2014 Month

Station	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Total
02	0.21	4.27	1.73	1.61	2.77	2.88	1.91	3.05	1.48	5.59	1.54	5.98	33.02
03	0.59	4.51	1.82	1.52	1.70	2.15	1.74	3.49	1.28	5.85	1.89	5.30	31.84
04	0.95	2.97	1.43	1.08	1.38	2.11	1.54	2.75	1.11	8.61	2.37	5.10	31.40
06	1.60	4.69	1.54	0.90	1.47	1.68	1.49	2.35	2.95	5.26	2.75	8.98	35.66
07	1.24	4.68	1.41	1.39	1.37	1.88	1.61	2.09	2.07	6.32	2.99	8.49	35.54
08	0.78	2.85	1.21	1.27	0.99	2.20	1.00	2.47	1.01	6.15	2.81	5.69	28.43
09	0.23	4.32	1.69	1.19	1.57	2.19	1.52	2.95	2.35	7.69	3.69	6.64	36.03
10	1.20	4.51	1.49	0.98	1.20	1.88	1.14	2.37	1.81	6.67	3.55	5.78	32.58
11	0.16	4.08	1.36	0.99	1.29	1.95	1.45	2.24	2.34	6.52	4.05	4.85	31.28
12	0.80	4.15	1.35	1.34	1.66	1.96	1.18	1.50	1.17	5.35	4.16	5.35	29.97
13	0.22	3.76	1.51	1.15	1.57	1.86	0.96	3.07	1.83	8.17	3.39	4.64	32.13
15	0.78	4.43	1.48	1.07	1.54	1.82	1.41	2.42	3.91	7.10	4.35	5.35	35.66
16	0.09	3.31	1.33	1.02	1.15	1.64	1.07	1.67	3.72	6.34	4.61	4.67	30.62
18	1.67	4.51	1.48	1.59	2.09	2.65	1.59	3.07	1.64	8.62	3.87	3.98	36.76
19	0.26	3.73	1.40	1.52	2.07	2.69	1.70	2.80	1.54	7.92	4.15	5.29	35.07
20	0.11	3.33	1.36	1.07	1.43	1.84	1.32	2.25	2.15	6.53	4.48	4.39	30.26
21	0.20	3.44	1.25	1.09	1.93	2.59	1.39	2.38	2.25	6.12	3.68	3.70	30.02
22	1.01	4.33	1.22	1.09	1.38	2.01	1.41	1.96	2.22	7.05	4.17	3.91	31.76
23	0.56	3.16	1.32	1.01	2.36	2.30	1.16	2.05	3.04	5.94	4.36	3.74	31.00
24	3.38	4.24	1.39	1.43	1.53	2.11	0.98	2.53	1.01	6.91	2.99	5.08	33.58
Avg	0.80	3.96	1.44	1.22	1.62	2.12	1.38	2.47	2.04	6.74	3.49	5.35	32.63

Figure 2. Network average annual precipitation (inches) for September 1993 - August 2014

Figure 3. Total precipitation (inches) for September 2013 - August 2014

Figure 5. Precipitation (inches) for November 2013 and December 2013

Figure 6. Precipitation (inches) for January 2014 and February 2014

Figure 7. Precipitation (inches) for March 2014 and April 2014

Figure 8. Precipitation (inches) for May 2014 and June 2014

Figure 9. Precipitation (inches) for July 2014 and August 2014

Table 2. Comparison of Total Precipitation (inches), Number of Precipitation Events, and Average Precipitation per Event for Each Month and Season, 1993-2013 and 2013-2014

	1993-2013 21-yr average			2013-2014 average			
Period	Precipitation	Events	Inches/event		Precipitation	Events	Inches/event
Sep							
Oct	3.00	7.6	0.39		0.80	6	0.13
Nov	2.68	8.7	0.32		3.96	9	0.44
Dec	2.62	9.0	0.34		1.44	6	0.24
Jan	1.92	9.6	0.24		1.22	11	0.11
Feb	1.99	8.9	0.26		1.62	16	0.10
Mar	1.75	8.1	0.24		2.12	9	0.24
Apr	2.22	8.5	0.26		1.38	8	0.17
May	3.61	11.2	0.34		2.47	11	0.22
Jun	4.33	13.3	0.33		2.04	7	0.29
Jul	3.98	12.0	0.33		6.74	11	0.61
Aug	3.62	10.6	0.26		3.49	8	0.44
	3.14	11.4	0.28		5.35	18	0.30
Fall							
Winter	8.09	24.9	0.32		6.20	21	0.30
Spring	5.54	26.8	0.21		4.96	36	0.14
Summer	10.09	32.9	0.31		5.89	26	0.23
	10.11	33.0	0.31		15.58	37	0.42
Annual	33.82	119.0	0.28			32.63	120

The number of network precipitation periods was determined for the previous 21-year period. Mean monthly, seasonal, and annual number of precipitation events are presented for 2013-2014 (Table 2). The monthly, seasonal, and annual numbers of precipitation events averaged over the 1993-2013 period also are presented (Table 2). A network storm period is defined as a precipitation event separated from proceeding and succeeding events at all network stations by at least three hours.

A total of 2,619 storm periods occurred during the 22-year observation period, resulting in an average of 119 storm events per year. During Year 22, there were 120 precipitation events. Fewer events than average occurred in November 2013, May 2014, and July 2014. A greater number of events than average occurred in January and August 2014. The winter and summer had more events than average, and the spring, a fewer than average number of events. The summer was the only season with above average precipitation and an above average amount of precipitation per event.

The plot of the network average monthly precipitation time series (Figure 10) beginning in September 2007 shows the monthly variation of precipitation. The continuation of a very dry period when only six months had precipitation of greater than 3.0 inches that began in February 2005 through May 2008 is evident. June 2008 through June 2011 was wetter, with 15 months receiving 4.5 inches of precipitation or greater. From July 2011 through August 2012, only three months had more than 2.5 inches of precipitation, and six months had less than 2 inches of precipitation. The growing season of Year 21(2012-2013), experienced both above and below average precipitation periods: with two spring months totaling more than 14 inches of rain
followed by three summer months totaling less than 5 inches of rain, a wet spring followed by a dry summer. In Year 22, the opposite occurred with a dry spring (5.89 inches) and a wet summer (15.58 inches).

Figure 10. Network average monthly precipitation (inches), September 2007 - August 2014
The storm recurrence frequency is the statistical probability of the recurrence of a storm with the reported precipitation (i.e., a 10 -year storm would be expected to occur on average only once every 10 years at a given station, or have a 10 percent chance of occurring in any given year). The recurrence frequencies computed here are for each gauge and are based upon the gage total storm precipitation and the total storm duration for the gauges with precipitation.

In Year 22, six of the 120 network storm periods exceeded the 1-year or greater recurrence frequency, for a total of 101 heavy rain events in 22 years of network operation.. Of the 101 heavy storm events producing a maximum precipitation at one or more gages with a recurrence frequency greater than one year: there were: 50-yr (1 storm event), 10-year (6 storms), 5 -year (12 storms), 2-year (40 storms), and 1-year (42 storm events). The 50-year storm occurred on 13 September 1993, and the 10-year storms on: 16 May 1995, 8 May 1996, 19 July 1997, 30-31 March 2007, 11-14 September 2008, and 19-20 July 2010.

An average of 119 rain events and 5 heavy rain events have occurred per operation year. Year 22 had both an average number of storm periods and an average number of heavy rainfall events. Two of the heavy rain events were in the 2-year recurrence frequency category and four storm events were in the 1 -year recurrence frequency. No 5 -year, 10 -year, 25 -year, or 50 -year events occurred.

Groundwater Levels

The long-term hydrograph at MTOW-01A (Snicarte), 1958 to present, in Figure 11 provides a reference for comparison with the shorter records of the other network wells. The ISWS has a record of water levels at this site since 1958. Annual fluctuations from less than a foot to

Figure 11. Groundwater levels at the Snicarte wells, 1958-2014
more than 8 feet have been observed. Based on the data available, these annual fluctuations often appear to be superimposed on longer term trends, perhaps 10 years or more.

A detailed look at water levels at the Snicarte site since 1990 is shown in Figure 12. During and shortly after the drought years of 1988 and 1989, the water level fell to 40.5 feet below land surface from September 1989 until April 1990, the only time in its 45-year history that the well went dry, until it did so again in 2006 and 2007. During the 1993 flood, groundwater levels rose around 8 feet and peaked at approximately 11 feet below land surface in September 1993.

The dramatic drop in 1988-89 shows how significantly a major drought can impact the aquifer. Though irrigation data is not available for 1988, based on data from the other parts of the state (Cravens, et al., 1989) it is likely that irrigation in 1988 was one of the highest amounts of any year. This is because summer precipitation was so low and summer temperatures were so high in 1988. Similarly, the irrigation amounts in 2005 (72 billion gallons) were 164 percent of average since 1995 and we saw similar dramatic declines in water levels. Conversely, Year 17 (20082009), Year 18 (2009-2010) and most of Year 19 (2010-2011) were relatively wet years with low irrigation withdrawals, and water levels rose.

Above average precipitation in Year 17(2008-2009) elevated groundwater levels to the point of near record highs since the observation well network was established in 1995. A second year of higher than average precipitation in Year 18(2009-2010) elevated groundwater levels to record highs in several of the network wells.

Figure 12. Groundwater levels at MTOW-01(Snicarte, IL) 1990-2013

The above average precipitation continued until June of 2011. Because of the high precipitation totals between 2008 and 2011, the study area experienced widespread Groundwater Flooding, Figures 13 and 14 show two areas that experienced groundwater flooding. The flooding subsided during the late summer and fall of 2011.

From July 2011 until December 2012, the study area received below average precipitation. Figure 12 above shows groundwater levels declining during the drought of 2012. The groundwater levels came close to approaching the lows seen during the 1988-1989 drought and the exceptionally low groundwater levels of 2006-2008. 2014 saw groundwater levels remain steady as precipitation amounts fell above average during irrigation season.

Figure 13. Groundwater flooding near Easton (Photo courtesy of Dr. George Roadcap)

Figure 14. Groundwater flooding of Sand Lake near Havana (Photo courtesy of Dr. George Roadcap)

Previous reports have shown hydrographs indicating recharge events in the aquifer occurring within a few days after a rainfall event. In other words, recharge occurs on a scale of days after a precipitation event, and so historical monthly measurements missed many such events. Based on these results, the IVWA purchased ten In-Situ data loggers that were installed in wells between December 30, 2004 and August 2005.

The hydrographs generated by the continuous water level measurements have led to an increased understanding of the relationship between rainfall, irrigation, water levels, and recharge. Appendix A shows the hydrographs for all 13 wells within the observation well network. The hydrographs run from September 1, 2013 to August 31, 2014 and contain all groundwater elevation data and daily precipitation totals for nearby rain gauges. Looking at Figure 15, the rainfall/recharge relationship is evident as groundwater levels rise during periods of heavy precipitation. Pumpage can be seen as the downward "spikes" in groundwater elevations.

Figure 15. Year 22 Groundwater depth and precipitation for MTOW-10
Figure 16 shows the entire period of record for MTOW-02, located within the village limits of Easton, IL. It is interesting to note the lowest water levels on record occur on August 25 and 26, 2012 while one of the highest water levels occur on June 2, 2013. The high and low water levels were 4.24 feet and 14.03 feet below land surface, respectively. The only higher water levels were in June of 1995 and during 2009-2011. Having such high and low water levels in such a short time period reflects the recharge capabilities of the aquifer, particularly in the Easton region and the influence rainfall has on the aquifer.

Figure 17, 18 and 19 are hydrographs showing groundwater elevation and precipitation data for a portion of Year 22. The hydrographs start June 1, 2014 and go to the end of the project year which ends August 31, 2014. The hydrographs illustrate the effects of irrigation pumpage resulting in the lowering of groundwater levels

Figure 20 and 21 are aerial photo graphs showing the locations of MTOW-10 and MTOW12 with the surrounding irrigation pivots. MTOW-10 at San Jose, IL, has three irrigation pivots in close proximity. Assuming the well is in the center of the pivot, the two closest wells are 1450 and 1800 feet away. Figure 17(MTOW-10) indicates that two or more irrigation wells may be influencing water levels. The downward spikes in water level seem to be of different sizes and irregularly shaped, indicating multiple wells. It seems likely the drawdowns come from irrigation and not the Village of San Jose well as the village wells are a greater distance away. The downward spikes in water levels occur every few days during irrigation season and are much more pronounced than during the non-irrigation times of the year (Figure 15).

Figure 21 is an aerial view near MTOW-12 (Hahn Farm) and the nearby irrigation pivots. The two closet irrigation center pivots are 1120 and 2519 feet away. The Hahn well appears to only be influenced by the closer of the two irrigation wells. MTOW-06 at the State Tree Nursery shows the same trends in Figure 18.

Figure 16. Groundwater elevations at the Easton well, MTOW-02, January 1, 1995-August 31, 2015

Figure 17. Groundwater elevations and precipitation at the San Jose well, MTOW-10, June 1, 2014-August 31, 2014

Figure 18. Groundwater elevations and precipitation at the Tree Nursery well, MTOW-06, June 1, 2014-August 31, 2014

Figure 19. Groundwater elevations and precipitation at the Hahn Farm well, MTOW-12, June 1, 2014-August 31, 2014

Figure 20. Aerial view of MTOW-10 and irrigation pivots

Groundwater levels in the Pekin (MTOW-05) and Havana-IDOT (MTOW-09) wells have been found to fluctuate largely in response to river stage because of their proximity to the Illinois River. Since these two monitoring wells are so strongly influenced by the Illinois River, the wells are not outfitted with pressure transducers and are measured three to four times a year. The hydrographs for these two wells (MTOW-05 and MTOW-09) are located in Appendix A.

Figure 21. Aerial view of MTOW-12 and irrigation pivots

Irrigation Water Use

The IVWA has provided to the ISWS a monthly estimated total pumpage of irrigation since 1997. This value is an aggregate of all irrigation which occurs over the water authority area. The water authority area includes Mason County and parts of six townships in Tazewell County. The total irrigation pumpage in 2014 was approximately 43 billion gallons (bg), which is the eleventh highest irrigation amount for the observation period. The number of irrigation systems is now at 2353. Figure 22 shows the location of irrigation systems through 2014. For Year 22, the higher than normal precipitation during the summer affected irrigation practices. Irrigation in July was estimated at $9.9 \mathrm{bg}, 5 \mathrm{bg}$ less than the average. All other months hit right along the average. It
should be noted the IVWA now collect data for the months of May and October. While October falls outside the time frame of the project year which ends August 31 of every year, the totals for October will in included as the data represents the conditions in that year, not the following year. The totals from these months had previously been added to the June and September totals, but will no longer be

The monthly and seasonal estimates of irrigation withdrawals are shown in Table 3. These data were calculated for the Imperial Valley by previously described methods. The rank from highest to lowest irrigation amounts are shown in the right hand column in Table 3. Two of the

Figure 22. Location of Irrigation Systems within IVWA (2014).
three highest irrigation withdrawals have occurred within the last three years. Typically, irrigation withdrawals are greatest in July and August, with September and June withdrawals being much lower as compared with July and August. That was not the case in 2014 as August, September and October proved to be the more heavily irrigated months. Septembers 27.2 billion gallons pumped is the highest on record and the 9.4 billion gallons pumped is higher than many past years Septemer/October totals. Though more irrigation systems are added each year, suggesting that
irrigation pumpage should keep increasing, it is clearly apparent that the timing and amount of rainfall received during the irrigation season (rather than throughout the whole year) are primary contributing factors affecting the amount of irrigation.

The estimated monthly irrigation pumpage is displayed graphically in Figure 23 along with average monthly network precipitation. These pumpage values show a tendency for lower irrigation amounts during times of increasing precipitation and vice versa, but also show that irrigation is dependent on the timing of precipitation. For example, only 30 bg were pumped in 2000 (Year Eight), even though 2000 showed a deficit of 9.5 inches (Table 4). This was because significant precipitation fell during the summer of 2000, reducing the need for irrigation. Similarly, Year Fifteen (summer 2007) was the ninth driest of network operation, but ranked number 2 for irrigation pumpage. Irrigation during 2013(Year 21) started out as one of the lowest on record, but that quickly changed as precipitation became scarce.

The abundant rainfall early in 2011 both decreased the amount of water withdrawn for irrigation and resulted in higher groundwater levels throughout the study area. However, the severe drought conditions since have seen record amounts of pumpage due to irrigation. During 2011, 2012 and 2013 irrigation seasons, a total of 221 bg of water was pumped, by far more than any other 3 year period. Table 4 also shows that for 9 of the last 11 years and for 14 of the 21 years on record, rainfall has been below the 30-year (1981-2010) historical average of 38.38 inches (average of Havana and Mason City).

Figure 23. Estimated irrigation pumpage and average monthly precipitation, Imperial Valley

Table 3. Estimated Monthly Irrigation Withdrawals (billion gallons), Number of Irrigation Systems, Withdrawal per System and Withdrawal Rank

Year	May	June	July	August	September	October	Total\#	Systems	BG/system	Rank
1995		2.6	14	10	11		38			14
1996		2.0	20	18	12		52			
1997		2.6	19	14	2.0		38			14
1998		2.1	7.8	13	6.9		30	1622	.018	17
1999		2.8	18	12	6.0		39	1771	.022	13
2000		6.4	6.0	12	5.6		30	1799	.017	17
2001		4.4	21	17	5.0		47	1818	.026	8
2002		3.4	24	16	3.7		47	1839	.026	.025
2003		4.1	16	15	10		46	1867	.025	
2004		5.3	12	19	5.7		42	1889	.022	10
2005		15	29	23	4.8		72	1909	.038	12
2006		7.2	22	16	5.2		50	1940	.026	2
2007		16	17	19	4.9		57	1971	.029	7
2008		1.2	10	14.5	7.1		33	2014	.016	4
2009		1.6	9.3	12.1	2.9		26	2054	.013	16
2010		1.8	2.4	11.7	10.6		27	2077	.013	20
2011		0.7	2.5	24.7	19.6	5.0	52	2100	.025	19
2012	0.1	12.3	26.4	39.7	17.4	2.2	98	2160	.045	5
2013	0.1	0.7	4.8	25.0	27.2	9.4	67	2293	.045	1
2014	0.1	5.1	9.9	17.7	8.9	1.2	43	2353	.018	3
										11
Average	0.1	4.8	14.6	18.3	9.3	4.6	51.7		.025	

Note:
Total annual withdrawal may differ from sum of monthly withdrawals due to rounding error. Also, data regarding the number of systems in 1995-1997 are unavailable. Also, the BG/system was rounded incorrectly for 2009 and should be .013. October data became available for 2011 and May data available for 2012. 2013 data was calculated erroneously in the previous report and has been corrected.

Table 4. Average Annual Precipitation, Annual Precipitation Surplus, Running Surplus, and Ranked Annual Precipitation and Irrigation, Imperial Valley Network

September-August Network average period precipitation (in.)		Annual	Running	Rank	
		surplus (in.)	surplus (in.)	Precip.	Irrigation
1992-1993	55.55	+17.17	+17.17	1	-
1993-1994	40.21	+1.83	+19.00	4	-
1994-1995	39.42	+1.04	+20.04	7	13
1995-1996	25.70	-12.68	+7.36	20	5
1996-1997	27.31	-11.07	-3.71	18	13
1997-1998	40.06	+1.68	-2.03	5	16
1998-1999	34.02	-4.36	-6.39	11	12
1999-2000	25.81	-12.57	-18.96	19	16
2000-2001	30.97	-7.41	-26.37	13	8
2001-2002	39.91	+1.53	-24.84	6	8
2002-2003	30.06	-8.32	-33.16	14	10
2003-2004	29.64	-8.74	-41.90	15	11
2004-2005	27.34	-11.04	-52.94	17	2
2005-2006	27.74	-10.64	-63.58	16	7
2006-2007	31.94	-6.44	-70.02	12	4
2007-2008	35.02	-3.36	-73.38	9	15
2008-2009	49.34	+10.96	-62.42	2	19
2009-2010	47.91	+9.53	-52.89	3	18
2010-2011	34.17	-4.21	-57.10	10	5
2011-2012	21.44	-16.94	-74.04	21	1
2012-2013	38.35	-0.03	-74.07	8	3
2013-2014	32.63	-5.75	-79.82	12	
1981-2010 30-yr average	39.80 (Havan				
1981-2010 30-yr average	$36.98 \text { (Mason City) }$				
1981-2010 30-yr average	38.38 (average of Mason City and Havana used to determine surplus)				
1993-2013 21-yr average	33.82 (21-yea	WA network	erage)		

Note: Site 16 was excluded from network average computations from 1996-1997 through 2001-2002.

Summary

During Year 22 of the rain gauge network operation (September 2013-August 2014), the network received an average of 32.63 inches of precipitation, 1.19 inches below the previous 21year network average precipitation of 33.82 inches, and 5.75 inches below the 30-year average for the study area, 38.38 inches. Year 22 was the $12^{\text {th }}$ wettest year since the deployment of the precipitation network. The spring of 2014 was the third driest spring of network operations, and the summer of 2014 was the fourth wettest of 22 years.

The data collected over the last 22 years as part of this project have been invaluable to the ISWS in developing a better understanding of the groundwater system in the Havana Lowlands, as well as the Mahomet Aquifer as a whole. What amazes many people who have looked at the data for the Havana Lowlands Region is the fact that water levels are basically unchanged from the 1960's even though there are now over 2000 irrigation systems in the region and in the early 1960's, there were less than 100.

The ISWS is grateful to the IVWA for their continued support of the rain gauge and observation well networks. Please contact Kevin Rennels, Steve Wilson or Nancy Westcott if you have any questions or comments.

Sincerely,

Kevin L. Rennels
Field Research Specialist
Illinois State Water Survey
krennels@uiuc.edu
Phone: (217) 333-8466

Steven D. Wilson
Groundwater Hydrologist
Illinois State Water Survey sdwilson@uiuc.edu
Phone: (217) 333-0956

Nancy Westcott Research Meteorologist Illinois State Water Survey nan@illinois.edu
Phone: (217) 244-0884
c: Dorland Smith
Wayne Deppert
Don Osborn, Jr.

Appendix A. Hydrographs, Imperial Valley Observation Well Network

Figure A-1. Year 22 Groundwater depth and precipitation for MTOW-01A

Figure A-2. Year 22 Groundwater depth and precipitation for MTOW-02

Figure A-3. Year 22 Groundwater depth and precipitation for MTOW-03

Figure A-4. Year 22 Groundwater elevation and precipitation for MTOW-04

Figure A-5. Year 22 Groundwater depth and precipitation for MTOW-05 (not continuous recorder)

Figure A-6. Year 22 Groundwater elevation and precipitation for MTOW-06

Figure A-7. Year 22 Groundwater elevation and precipitation for MTOW-07

Figure A-8. Year 22 Groundwater elevation and precipitation for MTOW-08

Figure A-9. Year 22 Groundwater depth and precipitation for MTOW-09 (not continuous recorder)

Figure A-10. Year 22 Groundwater depth and precipitation for MTOW-10

Figure A-11. Year 22 Groundwater elevation and precipitation for MTOW-11

Figure A-12. Year 22 Groundwater elevation and precipitation for MTOW-12

Figure A-13. Year 22 Groundwater depth and precipitation for MTOW-13

